首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 952 毫秒
1.
《Polymer Composites》2017,38(8):1749-1755
Wood flour (WF)‐filled composites based on a polypropylene (PP)/recycled polyethylene terephthalate (r‐PET) matrix were prepared using two‐step extrusion. Maleic anhydride grafted polypropylene (MAPP) was added to improve the compatibility between polymer matrices and WF. The effects of filler and MAPP compatibilization on the water absorption, mechanical properties, and morphological features of PP/r‐PET/WF composites were investigated. The addition of MAPP significantly improved mechanical properties such as tensile strength, flexural strength, tensile modulus, and flexural modulus compared with uncompatibilized composites, but decreased elongation at break. Scanning electron microscopic images of fracture surface specimens revealed better interfacial interaction between WF and polymer matrix for MAPP‐compatibilized PP/r‐PET/WF composites. MAPP‐compatibilized PP/r‐PET/WF composites also showed reduced water absorption due to improved interfacial bonding, which limited the amount of absorbable water molecules. These results indicated that MAPP acts as an effective compatibilizer in PP/r‐PET/WF composites. POLYM. COMPOS., 38:1749–1755, 2017. © 2015 Society of Plastics Engineers  相似文献   

2.
The viability of the thermomechanical recycling of postconsumer milk pouches [a 50 : 50 low‐density polyethylene/linear low‐density polyethylene (LDPE–LLDPE) blend] and their use as polymeric matrices for coir‐fiber‐reinforced composites were investigated. The mechanical, thermal, morphological, and water absorption properties of recycled milk pouch polymer/coir fiber composites with different treated and untreated fiber contents were evaluated and compared with those of virgin LDPE–LLDPE/coir fiber composites. The water absorption of the composites measured at three different temperatures (25, 45, and 75°C) was found to follow Fickian diffusion. The mechanical properties of the composites significantly deteriorated after water absorption. The recycled polymer/coir fiber composites showed inferior mechanical performances and thermooxidative stability (oxidation induction time and oxidation temperature) in comparison with those observed for virgin polymer/fiber composites. However, a small quantity of a coupling agent (2 wt %) significantly improved all the mechanical, thermal, and moisture‐resistance properties of both types of composites. The overall mechanical performances of the composites containing recycled and virgin polymer matrices were correlated by the phase morphology, as observed with scanning electron microscopy. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

3.
To reduce the moisture absorption of wood‐fiber‐reinforced recycled plastic composites (WRPCs), a coupling agent (KH550), methyl methacrylate (MMA), and maleic anhydride (MA) were used to modify the wood fibers. The surface‐treated wood fibers were mixed with recycled polypropylene and processing agents to fabricate the WRPCs. The mechanical properties and moisture absorption behavior of the WRPCs were determined. The results showed that the three surface treatment methods could effectively reduce the moisture absorption and thickness swelling of WRPCs. In Comparison to the properties of untreated wood‐fiber‐reinforced WRPCs, the moisture absorption ratio of WRPCs with wood fibers treated by MMA, KH550, and MA was reduced by 31.4%, 49.8%, and 38.2%, respectively, and the tensile strength was increased by 22.1%, 26.3%, and 4.2%, respectively. The impact toughness of the WRPCs was increased by 36.2% KH550 treatment and 19.2% for MMA treatment but was decreased by 4.2% for MA treatment. Coupling treatment of the wood fibers was the best way to reduce the moisture absorption of WRPCs, and this kind of WRPC possessed the best comprehensive properties. J. VINYL ADDIT. TECHNOL., 2010. © 2009 Society of Plastics Engineers  相似文献   

4.
The effect of fiber surface pretreatment on the interfacial strength and mechanical properties of wood fiber/polypropylene (WF/PP) composites are investigated. The results demonstrate that fiber surface conditions significantly influence the fiber–matrix interfacial bond, which, in turn, determines the mechanical properties of the composites. The WF/PP composite containing fibers pretreated with an acid–silane aqueous solution exhibits the highest tensile properties among the materials studied. This observation is a direct result of the strong interfacial bond caused by the acid/water condition used in the fiber pretreatment. Evidence from coupling chemistry, rheological and electron microscopic studies support the above conclusion. When SEBS‐g‐MA copolymer is used, a synergistic toughening effect between the wood fiber and the copolymer is observed. The V‐notch Charpy impact strength of the WF/PP/SEBS‐g‐MA composite is substantially higher than that of the WF/PP composite. The synergistic toughening mechanisms are discussed with respect to the interfacial bond strength, fiber‐matrix debonding, and matrix plastic deformation. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1000–1010, 2000  相似文献   

5.
Six commercial polypropylene (PP) homopolymer grades, ranging from 2 to 125 g/10 min in MFR (230°C/2.16 kg), and from 530 to 180 kDa in terms of molar mass (mass average; Mw), have been tested as matrix polymers in wood polymer composites (WPCs) with a wood content of 40%. To check for possible molecular weight controlled interactions between matrix and additives, five different maleic anhydride grafted PP (MA‐PPs) coupling agents (CAs) have been included in the screening as well. Flexural properties, impact strength, and water absorption of the resulting composites served as responses. In addition, crystallinities, surface contact angles (on solid specimens), and rheological properties of the melt were measured for several compounds. The most important outcome of the study is that matrix polymer properties, as influenced by molar mass, are largely reflected in the resulting WPCs. Surprisingly, water absorption of the composites increases with matrix MFR, a phenomenon as yet not published for PP‐based compounds. Furthermore, dynamic rheometry results indicate that the interaction of wood particles with PP melts is dependent on polymer and coupling agent Mw. © 2013 Society of Plastics Engineers  相似文献   

6.
This study investigated durability performance of wood‐plastic composites (WPCs) that were exposed to accelerated cycling of water immersion followed by freeze thaw (FT). The WPCs used in this study were made of high‐density polyethylene (HDPE) or polypropylene (PP) with radiata pine (Pinus radiata) wood flour using hot‐press molding. These two types of plastics included both recycled and virgin forms in the formulation. In the experiments, surface color, flexural properties, and dimensional stability properties (water absorption and thickness swelling) were measured for the FT cycled composites and the control samples. Interface microstructures and thermal properties of the composites were also investigated. The results show that the water absorption and the thickness swelling of the composites increased with the FT weathering. In the meantime, the flexural strength and stiffness decreased. Scanning electron microscopy (SEM) images of the fractured surfaces confirmed a loss of interface bonding between the wood flour and the polymer matrix. Differential scanning calorimetry (DSC) showed a decrease in crystallization enthalpy and crystallinity of the wood flour‐plastic composites as compared with the neat PP and HDPE samples. The crystallinity of the FT cycled composites using the virgin plastics (vPP and vHDPE) increased; however, the composites with the recycled plastics decreased in comparison with corresponding control samples. In general, the properties of the composites were degraded significantly after the accelerated FT cycling. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

7.
This article deals with the feasibility of using recycled corrugated paper board (rPF) as the reinforcing material for recycled plastics. The composites of recycled polypropylene (rPP) and rPF were prepared by extrusion compounding and injection molding, and the rPP/rPF composites compatibilized by maleic anhydride grafted PP (PP‐g‐MA), maleic anhydride grafted ethylene‐1‐octene copolymer (POE‐g‐MA), and maleic anhydride grafted styrene‐ethylene‐butylene‐styrene copolymer (SEBS‐g‐MA) were also prepared. The crystallization and melting behavior, mechanical properties, thermal stability, and morphology of these composites were studied. The results indicated that rPF promoted the crystallization, enhanced the strength and toughness of rPP/rPF composites to some extent while decreased thermal stability at the same time. PP‐g‐MA and POE‐g‐MA improved the dispersion and interface adhesion of rPF, and further upgraded the mechanical properties and vicat softening temperatures. Among these compatibilizers, PP‐g‐MA was most favorable to the strength improvement while POE‐g‐MA was most favorable to the toughness improvement. As for SEBS‐g‐MA, it had no obvious modification effect. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
Polystyrene (PS) from packing materials and plastic cups was reinforced with 30 and 50% wood flour through a blending process with and without a commercial compatibilizing agent. The processability of the pure recycled polystyrene (rPS) and wood–rPS composites was studied in terms of the torque of the mixing process; this was then compared with that of a commercial virgin multipurpose PS. The physical and mechanical properties were compared with those of the virgin PS reinforced with 30 and 50% wood flour. The results show that the mechanical properties of the pure and reinforced rPS did not decrease with respect to the virgin PS, and in terms of the impact strength, the rPS was superior to the virgin plastic. The mechanical properties were not affected by the commercial compatibilizing agent, but the torque of the blends was significantly lower with the compatibilizer. Differential scanning calorimetry (DSC) and dynamic mechanical analysis were used to study the glass‐transition temperature (Tg) of both the pure virgin PS and pure rPS and the wood flour–PS composites. The Tg values of the rPS and wood–rPS composites were higher than those of the virgin PS and wood–virgin PS composites. The use of rPS increased the stiffness and flexural modulus of the composites. Thermogravimetric analysis revealed that the thermal stability of rPS and its composites was slightly greater than that of the virgin PS and its composites. These results suggest that postconsumer PS can be used to obtain composite materials with good mechanical and thermal properties. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
This work focused on two difficulties associated with preparation of polypropylene/wood flour (PP/WF) composites, viz. the compatibility of PP with WF and processing of the composites with high melt viscosity. Maleic anhydride‐grafted polypropylene (MAPP) was used in the preparation of PP composites to provide the compatibility between polymer and filler. Hyperbranched polyester (HBPE) was incorporated to check feasibility of it as a processing aid in the same. The PP/WF composites were formulated by melt compounding on a Brabender Plastograph EC. Blending effect of compatibilizer and processing aid HBPE on PP/WF biocomposites have been carried out on the basis of torque analysis, mechanical properties, morphology, and thermal stability. The investigation showed that HBPE improves the processibility of PP/WF composites than MAPP with respective to torque value. The mechanical and thermal properties slightly vary with change in relative proportion of MAPP and HBPE. J. VINYL ADDIT. TECHNOL., 24:179–184, 2018. © 2016 Society of Plastics Engineers  相似文献   

10.
The effect of grafting level of maleic anhydride (MA) in the maleated polypropylene (PPMA) on the fracture, deformation mechanisms, and mechanical properties of polypropylene (PP) wood flour composites was studied. Tensile strength, elongation at break, and impact strength are noticeably improved with addition of interfacial modifiers as maximum values of the examined mechanical properties were detected when concentration of MA in the compatibilizer was 1 wt %. To explore the microstructure and deformation mechanisms, scanning electron microscopy was employed. It was found that low concentrations of MA up to 1 wt % led to the creation of a thin and irregular polymer layer assisted formation of fibrillated plastic deformation zone around the wood particles, while the bulk PP matrix experienced voiding and brittle fracture. Higher concentrations of MA fetch to stronger interaction between PP and wood flour, the reason for brittle fracture and reduced ductility of the matrix. The impact fracture behavior of the composites during Instrumented impact tests is also discussed with respect to the interfacial bond strength. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1286–1292, 2004  相似文献   

11.
Mechanical properties of wood plastic composites (WPCs) manufactured from sawdust and virgin and/or recycled plastics, namely high density polyethylene (HDPE) and polypropylene (PP), were studied. Sawdust was prepared from beech industrial sawdust by screening to the desired particle size and was mixed with different virgin or recycled plastics at 50% by weight fiber loading. The mixed materials were then compression molded into panels. Flexural and tensile properties and impact strength of the manufactured WPCs were determined according to the relevant standard specifications. Although composites containing PP (virgin and recycled) exhibited higher stiffness and strength than those made from HDPE (virgin and recycled), they had lower unnotched impact strengths. Mechanical properties of specimens containing recycled plastics (HDPE and PP) were statistically similar and comparable to those of composites made from virgin plastics. This was considered as a possibility to expand the use of recycled plastics in the manufacture of WPCs. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3641–3645, 2006  相似文献   

12.
聚乳酸基木塑复合材料的相容性研究   总被引:4,自引:1,他引:3  
以聚乳酸(PLA)、松木粉为主要原料,用双螺杆挤出机制备了PLA基木塑复合材料。研究了硅烷偶联剂和增容剂对PLA基木塑复合材料力学性能和结构形态的影响。结果表明,硅烷偶联剂可以增加PLA与木粉之间的界面结合力,但是对体系的力学性能影响不是很大;增容剂的加入能够提高复合材料的力学性能。  相似文献   

13.
The lack of polar groups in thermoplastics (e.g., in polystyrene) provides low adhesion with cellulosic fibers. To improve compatibility between reinforcement and matrix, maleic anhydride (MA) was selected as a coupling agent for wood fiber-filled polystyrene composites. In general, the mechanical properties improved along with increased concentrations of MA, initiator (e.g., benzoyl peroxide) and wood fiber up to a certain limit and then decreased. The concentrations of MA and fiber which produced maximum improvements in the mechanical properties varied according to wood species, pulping techniques and type of polystyrene. Moreover, properties were further enhanced when another coupling agent (e.g., isocyanate) was used in addition to the MA.  相似文献   

14.
PP基木塑复合材料的制备及性能研究   总被引:1,自引:0,他引:1  
以PP为基体,采用热压成型方法制备木塑复合材料。通过X-ray衍射,SEM研究了木粉含量、偶联剂改性对复合材料结晶、流变、力学性能的影响。结果表明,木粉的加入会抑制β-PP晶型的生成,10份木粉可能有助于(040)晶面的生长。随着木粉含量的增加,复合材料的拉伸强度有所提高,而冲击性能明显降低。加入0.5份铝酸酯偶联剂时,α-PP的特征峰(130),以及主要晶面(010)、(040)的衍射强度均有所增加,缺口冲击强度为6.25kJ/㎡,较WF30提高23.52%,SEM结果也显示出同样的趋势;同时,材料的加工性能也有所改善。  相似文献   

15.
In this article, the influence of ammonium polyphosphate (APP) and ammonium polyphosphate modified with 3‐(Methylacryloxyl) propyltrimethoxy silane (M‐APP) on mechanical properties, flame retardancy, and thermal degradation of wood flour–polypropylene composites (WF/PP composites) have been investigated. Polypropylene grafted with m‐isopropenyl‐α,α‐dimethylbenzyl‐isocyanate (m‐TMI‐g‐PP) was used to improve the adhesion of WF/PP composites. APP and M‐APP were used as flame retardants. The experimental results demonstrated that addition of M‐APP obviously enhanced mechanical properties of WF/PP composites. According to cone calorimetry results, M‐APP is also an effective flame retardant for WF/PP composites, compared to that of APP. It was also found that M‐APP decreased the 1% weight loss temperature and increased char residue. The thermal degradation of wood flour based upon the first peak temperature of wood decreased from 329.3 to 322.9°C and the thermal degradation of PP based upon the second peak temperature of PP improve from 518.0 to 519.6°C, when M‐APP was added to the WF/PP composites. From SEM results the char layer of the 25% M‐APP systems is much more intumescent than that of the 25% APP systems, indicating that 3‐(Methylacryloxyl) propyltrimethoxy silane can improve the char‐forming ability of WF/PP composites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
This study investigated physical, mechanical, and fire properties of the flat‐pressed wood plastic composites (WPCs) incorporated with various fire retardants (FRs) [5 or 15% by weight (wt)] at 50 wt % of the wood flour (WF). The WPC panels were made from dry‐blended WF, polypropylene (PP) with maleic anhydride‐grafted PP (2 wt %), and FR powder formulations using a conventional flat‐pressing process under laboratory conditions. The water resistance and strength values of the WPC panels were negatively affected by increasing the FR content as compared to the WPC panels without FR. The WPC panels incorporated with zinc borate (ZB) gave an overall best performance in both water resistance and strength values followed by the panels containing magnesium hydroxide (MH) and ammonium polyphosphate (APP). For these three FR's, the best fire resistance as measured in the cone calorimeter was obtained with the 15 wt % APP treatment and then followed by 15 wt % ZB, or 15 wt % MH formulations. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
This article presents the processing/structure/property relationships for artificial wood made from stretched PP/wood‐fiber (WF) composites that have required strength and density. The die drawing of PP/WF composites causes a unidirectional orientation of the polymer molecules and enhances the mechanical properties significantly along the stretched direction. The drawing of the composites also lowers the density of artificial wood by generating voids at the WF and polymer matrix interface. The critical processing and materials parameters are identified. The effects of these parameters on the structure and the properties are also investigated. POLYM. ENG. SCI., 2009. © 2008 Society of Plastics Engineers  相似文献   

18.
In an effort to determine to what extent natural fiber/plastic composites were recyclable, this study conducted repetitive processing cycles on wood flour/polypropylene composites through extrusion up to three times followed by injection molding. Mechanical properties of the composites, containing 10–50?wt% wood flour and with/without addition of 3?wt% maleic anhydride polypropylene (MAPP) as coupling agent, were evaluated by conducting tensile test, thermal analysis, and water absorption test. Repetitive processing as well as wood content and coupling agent addition influenced physical properties of the composites. MAPP functioned well in improving fiber-matrix adhesion in terms of mechanical properties. Repetitive processing did not deteriorate the composite’s properties; rather opposite effect was shown. Thermal analysis indicated that the alteration in properties was contributed by the molecular condition of the polypropylene matrix. Water absorption increased with the wood flour content but reduced when MAPP was added and with more processing cycles.  相似文献   

19.
在聚丙烯中(PP)中添加马来酸酐(MAH)和共单体苯乙烯(St),通过熔融挤出法制备了高接枝率的PP-g-(MAH-St),红外光谱分析证明了St和MAH成功接枝到PP主链上。研究了PP-g-(MAH-St)对PP/木粉复合材料力学性能的影响,并用扫描电镜观察了复合材料冲击断面的微观形貌。结果表明,与现有PP-g-MAH相比,只要添加少量PP-g-(MAH-St)就能有效改善PP/木粉复合材料的界面相容性,从而提高材料的力学性能;PP-g-(MAH-St)中MAH的接枝率对复合材料力学性能影响显著,当MAH接枝率为2.8 %时,能使木塑复合材料力学性能达到最佳。  相似文献   

20.
The purpose of this work was to study how mineral fillers would behave in a polypropylene (PP) matrix when PP modified with maleic anhydride (MA) and/or itaconic acid (IA) was used as a coupling agent in the preparation of mineral‐filled PP composites. The composites were characterized with tensile mechanical measurements and morphological analysis. The optimum amount of the coupling agent to be used to obtain composites with improved mechanical properties was established. The results indicated that these coupling agents enhanced the tensile strength of the composites significantly, and the extent of the coupling effect depended on the nature of the interface that formed. The incorporation of coupling agents enhanced the resistance to deformation of the composite. The behavior of IA‐modified PP as a coupling agent was similar to that of a commercial MA‐modified PP for the filled PP composites. Evidence of improved interfacial bonding was revealed by scanning electron microscopy studies, which examined the surfaces of fractured tensile test specimens; their microstructures confirmed the mechanical results with respect to the observed homogeneous or optimized dispersion of the mineral‐filler phase in these composites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2343–2350, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号