首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Emphasis of this article is on variable‐speed pitch‐controlled wind turbines with multi‐pole permanent magnet synchronous generator (PMSG) and on their extremely soft drive‐train shafts. A model and a control strategy for a full back‐to‐back converter wind turbine with multi‐pole PMSG are described. The model comprises submodels of the aerodynamic rotor, the drive‐train by a two‐mass model, the permanent magnet generator and the full‐scale converter system. The control strategy, which embraces both the wind turbine control itself and the control of the full‐scale converter, has tasks to control independently the active and reactive powers, to assist the power system and to ensure a stable normal operation of the wind turbine itself. A multi‐pole PMSG connected to the grid through a full‐scale converter has no inherent damping, and therefore, such configuration can become practically unstable, if no damping by means of external measures is applied. In this work, the frequency converter is designed to damp actively the drive‐train oscillations, thus ensuring stable operation. The dynamic performance of the presented model and control strategy is assessed and emphasized in normal operation conditions by means of simulations in the power system simulation tool DIgSILENT. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
针对目前中小型风力发电系统发电效率低,提出了一种新型拓扑结构,即机侧采用三相PWM整流器,网侧采用单相PWM逆变器。在对永磁同步发电机数学模型和风力机最佳输出功率进行分析的基础上,采用转子磁链定向控制技术,实现对发电机输出的有功功率的控制,进而实现对风力发电机最大功率的跟踪控制;同时,在单相系统中引入"虚拟电路",使网侧单相变流电路参数可以转化到旋转坐标系下,实现无静差控制。通过仿真试验验证了控制策略的可行性。  相似文献   

3.
Hua Ye  Bo Yue  Xuan Li  Kai Strunz 《风能》2017,20(8):1349-1364
In a wind energy conversion system (WECS), multiple‐time‐scale transients that cover a wide frequency range from low‐frequency transient stability up to high‐frequency switching events are observed. This paper presents a methodology of modeling diverse transients for a permanent magnet synchronous generator (PMSG)‐based WECS within the same study. Multiple physical areas of the PMSG‐based WECS are given depending on the appearance of carriers contained in the considered waveforms. In order to eliminate different carrier frequencies, the PMSG and generator‐side voltage source converter (VSC) are modeled in the dq0‐reference frame. On the other hand, the grid‐side VSC and utility grid are dealt with in the multi‐scale model of the network in which the shift frequency is available. The switching‐function and average‐value models of the VSC are selected depending on the carrier shifted. In addition, interface between the control and electrical subsystems is redesigned to offset the computation error caused by one time‐step delay. Two test cases are performed to study the wind power fluctuations and faults ride‐through. The results show that the proposed multi‐scale model is able to simulate slow‐changing dynamic responses up to high‐frequency transients accurately while decreasing the simulation burden. In comparison with the results obtained from the EMTP (electromagnetic transients program) type simulators, the effectiveness and accuracy of the multi‐scale model are verified. Copyright © 2017 The Authors Wind Energy Published by John Wiley & Sons Ltd.  相似文献   

4.
This paper concentrates on the output power smoothing and the grid dynamic response enhancement of a grid‐interactive MW‐class permanent magnet synchronous generator‐based wind energy conversion system (WECS). A simple fuzzy controller method is applied to improve the overall performance of the WECS. The proposed method can retrieve the storing kinetic energy from the inertia of a wind turbine, perfectly. As a result, it can ensure a proficient power smoothing of the variable speed WECS. On the other hand, the grid side inverter is controlled by the fuzzy controller. This approach can reduce the fluctuation of DC link voltage and can deliver a smooth power to the power grid. The proposed method is compared with two other methods such as the maximum power point tracking control method and the without fuzzy controller method. A simple shunt circuit also includes in the DC link circuit. Therefore, during the system fault condition, the WECS can perform a stable operation. Effectiveness of the proposed method is verified by numerical simulations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
The evolution, design and test results of a novel permanent magnet generator for use in direct‐drive wind turbines are presented. This generator topology is based on steel C‐core modules (which make up the rotor) and an air‐cored stator winding. This topology allows a reduction in structural mass for large diameter generators, which can lead to lightweight generators. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
永磁直驱风力发电系统MPPT控制的研究   总被引:1,自引:0,他引:1  
文章首先介绍了风力机模型。然后介绍了一种改进型的变步长爬山算法,通过该算法改变直驱风力发电系统三重交错并联Boost变换电路的占空比,从而实现最大功率跟踪,获取最大风能。最后,利用MATLAB/SIMULINK建立直驱永磁风力发电系统仿真模型并进行研究。试验结果表明,改进型变步长爬山算法比传统爬山算法能更快跟踪最大功率点,控制系统具有较好的控制精度和稳定性。  相似文献   

7.
永磁直驱风电系统PMSG的内模控制策略研究   总被引:1,自引:0,他引:1  
介绍了PMSG控制策略和内模控制的工作原理.采用内模控制策略设计电机侧PWM变流控制器的速度调节器与电流调节器,使控制器参数直接与电机参数相关联,实现对PMSG的控制.仿真结果显示,采用内模控制具有良好的稳态与动态性能,对输入机械转矩、转速给定等外部条件变化的响应速度快,对电机参数误差具有较强的适应性;内模控制应用于永磁直驱风电系统PMSG的控制,容易获取优化的控制器参数,可以有效提高控制性能.  相似文献   

8.
Modern wind turbines are predominantly variable speed wind turbines with power electronic interface. Emphasis in this paper is therefore on the modelling and control issues of these wind turbine concepts and especially on their impact on the power system. The models and control are developed and implemented in the power system simulation tool DIgSILENT. Important issues like the fault ride‐through and grid support capabilities of these wind turbine concepts are addressed. The paper reveals that advanced control of variable speed wind turbines can improve power system stability. Finally, it will be shown in the paper that wind parks consisting of variable speed wind turbines can help nearby connected fixed speed wind turbines to ride‐through grid faults. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
A doubly fed induction generator (DFIG) wind turbine depends on the control of the system at both generator and turbine levels, and the operation of the turbine is affected by the electrical characteristics of the generator and the aerodynamic characteristics of the turbine blades. This paper presents a DFIG energy extraction and control study by combining the two characteristics together in one integrative environment to examine various factors that are critical for an optimal DFIG system design. The generator characteristics are examined for different d‐q control conditions, and the extracted power characteristics of the turbine blades versus generator slip are presented. Then, the two characteristics are analyzed in a joint environment. An integrative study is conducted to examine a variety of parametric data simultaneously for DFIG maximum wind power extraction evaluation. A close‐loop transient simulation using SimPowerSystem is developed to validate the effectiveness of steady‐state results and to further investigate the wind energy extraction and speed control in a feedback control environment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Utilization of wind energy to maximum permissible limits for generating electrical power has become necessary to meet the global energy demands. Under such circumstances the present day conventional wind turbine generators pose a limitation regarding the overload capability, specifically significant when they need to operate in high‐energy wind conditions. It is proposed that by employing a completely different generator winding concept, based on high‐voltage cable technology, to a specific generator, it is possible to increase the generator overload capabilities and thereby making it operationally efficient in high wind speed situations. Therefore, the possibility of extracting more energy is predicted to increase. Simulations, based on finite‐element methods combined with external circuit models for the generator, have been performed. The results demonstrate that under given thermal and electrical restrictions, a direct‐driven permanent magnet synchronous wind turbine generator, based on high‐voltage cable windings, is capable of being overloaded more than twice the rated power, thus making it very suitable for strong wind situations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents an in depth evaluation and comparison of three different drivetrain choices based on permanent‐magnet synchronous generator (PMSG) technology for 10‐MW offshore wind turbines. The life cycle approach is suggested to evaluate the performance of the different under consideration drivetrain topologies. Furthermore, the design of the drivetrain is studied through optimized designs for the generator and gearbox. The proposed drivetrain analytical optimization approach supported by numerical simulations shows that application of gearbox in 10‐MW offshore wind turbines can help to reduce weight, raw material cost, and size and simultaneously improve the efficiency. The possibility of resonance with the first torsional natural frequency of drivetrain for the different designed drivetrain systems, the influence of gear ratio, and the feasibility of the application for a spar floating platform are also discussed. This study gives evidence on how gearbox can mitigate the torque oscillation consequences on the other components and how the latter can influence the reliability of drivetrain.  相似文献   

12.
In this paper a 1.5 kW flux switching permanent magnet (FSPM) generator is presented for direct drive small scale wind turbine applications. For maximizing induced voltage and the output torque while minimizing cogging torque and unbalanced radial magnetic force (UMF), the proposed machine exhibits a new 6/19 stator pole/rotor teeth number and an outer rotor configuration. At first, in the paper an analytical design has been developed, then a finite element method (FEM) analysis is carried out for validating the analytical procedure and for design improvement. The simulation results extracted by FEM confirm the theoretical analysis procedure and help in the understanding of the performance analysis of the machine against the variations of the design variables. Furthermore, an experimental laboratory prototype of the proposed FSPM is implemented to confirm the analytical design and FEM modelling approaches. A comparison of induced voltage, torque, UMF and cogging torque produced by different FSPM configurations present in literature respect to the proposed generator has been developed. The results show the goodness of the adopted methodology and prove that, because of suitable electromagnetic performance of the proposed FSPM generator, it could be counted as a proper candidate for small scale wind turbine applications. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, an adaptive dispatch strategy is presented to maximize the revenue for grid‐tied wind power plant coupled with a battery energy storage system (BESS). The proposed idea is mainly based on time‐varying market‐price thresholds, which are varied according to the proposed algorithm in an adaptive manner. The variable nature of wind power and market price signals leads to the idea of storing energy at low price periods and consequently selling it at high prices. In fact, the wind farm operators can take advantage of the price variability to earn additional income and to maximize the operational profit based on the choice of best price thresholds at each instant of time. This research study proposes an efficient strategy for intermittent power dispatch along with the optimal operation of a BESS in the presence of physical limits and constraints. The strategy is tested and validated with different BESSs, and the percentage improvement of income is calculated. The simulation results, based on actual wind farm and market‐price data, depict the proficiency of the proposed methodology over standard linear programming methods.  相似文献   

14.
基于Matlab/Simulink的永磁直驱风力发电机组建模和仿真研究   总被引:2,自引:0,他引:2  
以永磁直驱风力发电机组为研究对象,建立了包括风力机、传动部分、永磁直驱发电机、矢量控制策略、最大风能捕获策略的整体数学模型;应用Matlab/Simulink工具,以建立的数学模型为基础搭建了永磁直驱风力发电机组仿真模型,并以两次阶跃风速为例对所建模型并网后运行特性进行了仿真研究。实现了永磁直驱风力发电机组的最大风能捕获和功率解耦控制,仿真结果表明,永磁直驱风力发电机组具有良好的运行特性,同时验证了所建模型的正确性和有效性。  相似文献   

15.
Ambitious offshore wind energy targets continue to drive technological innovation, with the latest direct‐drive permanent magnet generator‐based wind turbines promising higher efficiency and availability. However, these machines have fixed rotor flux, provided by the magnets, which means that their voltage rises with speed. Further, high machine stator reactance leads to significant magnetic energy storage in the stator windings. Both these aspects provide new challenges for the power converter when designing to meet modern low‐voltage ride‐through requirements. This paper therefore proposes a novel control strategy, using a minimally rated chopper and dynamic brake resistor (DBR) integrated with the wind turbine's power converter, to help these systems to meet the demands of modern grid codes. This control method may allow the chopper and DBR to be rated at only 40% of a fully rated version. Despite only partially rating the DBR system, the control method minimizes the torsional oscillations in the drive train, thereby protecting the mechanical system. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
提出了一种改进的异步风力发电机直接转矩控制方法,此方法不仅简单,而且性能优于传统的滞环比较器控制方式。利用转矩模糊控制器和磁链控制器代替传统的滞环比较器,通过Matlab/Simulink仿真表明,基于空间矢量脉宽调制的直接转矩改进方法不仅改善了异步发电机稳态转矩脉动大的问题,而且减小了电机启动电流,还大大提高了整个控制系统的性能。  相似文献   

17.
针对风力发电系统中的双馈电机提出一种转子感应电势定向矢量控制方法。通过调节双馈电机转子侧的瞬时有功电流和无功电流,实现对电机力矩和转子侧励磁电流的调节,进而实现双馈电机无功功率调节。在控制过程中只需检测交流侧电流电压,不需要位置传感器,所以可以应用无速度传感器。最终通过仿真试验证明该方法的正确性和实用性。  相似文献   

18.
To achieve maximum power point tracking (MPPT) for wind power generation systems, the rotational speed of wind turbines should be adjusted in real time according to wind speed. In this paper, a Wilcoxon radial basis function network (WRBFN) with hill-climb searching (HCS) MPPT strategy is proposed for a permanent magnet synchronous generator (PMSG) with a variable-speed wind turbine. A high-performance online training WRBFN using a back-propagation learning algorithm with modified particle swarm optimization (MPSO) regulating controller is designed for a PMSG. The MPSO is adopted in this study to adapt to the learning rates in the back-propagation process of the WRBFN to improve the learning capability. The MPPT strategy locates the system operation points along the maximum power curves based on the dc-link voltage of the inverter, thus avoiding the generator speed detection.  相似文献   

19.
A process for optimizing both the design and operation of the generator for a large offshore vertical axis wind turbine (VAWT) is developed. The objectives of the optimization process are to minimize additional costs and losses in the generator to allow for a fair evaluation of the impact of the VAWT environment on the powertrain. A spectrum of torque control strategies was tested based on the ratio, q, of the allowed electrical torque variation to the inherent mechanical torque variation. Equations relating q to the generator losses were established. The effect of q on the energy extracted by the rotor was also investigated and incorporated into the optimization process. This work shows that a variable q strategy with respect to wind speed can improve turbine performance across the range of operational wind speeds depending on the torque loading from the rotor blades. In turn, this also allows for the torque rating of the generator to be reduced from the peak torque rating that would otherwise be expected, creating an opportunity to downscale the generator size, reducing costs. The optimization of powertrain design and operation should be carried out at as high level as is possible, ideally using the fully factored cost of energy (COE) to guard against unexpected losses because of excessive focus in one COE factor (for example reducing upfront cost but in turn reducing availability).  相似文献   

20.
Xiangyu Zhang  Yi Wang  Yuan Fu  Lie Xu 《风能》2016,19(2):313-328
This paper investigates virtual inertia control of doubly fed induction generator (DFIG)‐based wind turbines to provide dynamic frequency support in the event of sudden power change. The relationships among DFIGs' virtual inertia, rotor speed and network frequency variation are analysed, and a novel virtual inertia control strategy is proposed. The proposed control strategy shifts the maximum power point tracking (MPPT) curve to the virtual inertia control curves according to the frequency deviation so as to release the ‘hidden’ kinetic energy and provide dynamic frequency support to the grid. The calculation of the virtual inertia and its control curves are also presented. Compared with a PD regulator‐based inertial controller, the proposed virtual inertia control scheme not only provides fast inertial response in the event of sudden power change but also achieves a smoother recovery to the MPPT operation. A four‐machine system with 30% of wind penetration is simulated to validate the proposed control strategy. Simulation results show that DFIG‐based wind farms can provide rapid response to the frequency deviation using the proposed control strategy. Therefore, the dynamic frequency response of the power grid with high wind power penetration can be significantly improved. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号