首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一种新型的有源交错并联Boost软开关电路   总被引:12,自引:2,他引:12  
重点研究了有源交错并联Boost的软开关技术,提出了一种新型的有源交错并联的Boost软开关电路。在Boost主开关两端并联一个由有源辅助开关和关断缓冲吸收电容组成的有源缓冲吸收支路,:Boost的主开关管可以实现零电流导通和零电压关断,二极管的反向恢复电流带来的能量损耗能够大大减少。并且,在整个开关周期期间,附加的辅助开关管都是零电压开关。最后,设计试制了一台1.2kW实验样机。结果表明,该电路的所有功率器件均实现了软开关。  相似文献   

2.
This paper proposed a novel high step‐up converter with double boost paths. The circuit uses two switches and one double‐path voltage multiplier cell to own the double boost and interleaved effects simultaneously. The voltage gain ratio of the proposed DC‐DC converter can be three times the ratio of the conventional boost converter such that the voltage stress of the switch can be lower. The high step‐up performance is in accordance with only one double‐path voltage multiplier cell. Therefore, the number of diodes and capacitors in the proposed converter can be reduced. Furthermore, the interleaved property of the proposed circuit can reduce the losses in the rectifier diode and capacitor. The prototype circuit with 24‐V input voltage, 250‐V output voltage, and 150‐W output power is experimentally realized to verify the validity and effectiveness of the proposed converter. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, a novel auxiliary circuit is introduced for the synchronous buck converter. This auxiliary circuit provides zero‐current, zero‐voltage switching conditions for the main and synchronous switches while providing zero‐current condition for the auxiliary switch and diodes. The proposed active auxiliary circuit integrated with synchronous buck converter that emanates to zero‐voltage transition (ZVT)–zero‐current transition (ZCT) pulse width‐modulated (PWM) synchronous buck converter is analyzed, and its operating modes are presented. The additional voltage and current stresses on main, synchronous and auxiliary switches get decimated because of the resonance of the auxiliary circuit that acts for a small segment of time in the proposed converter. The important design feature of soft‐switching converters is the placement of resonant components that mollifies the switching and conduction losses. With the advent of ZVT–ZCT switching, there is an increase in the switching frequency that declines the resonant component values in the converters and also constricts the switching losses. The characteristics of the proposed converter are verified with the simulation in the Power Sim (PSIM) software co‐simulated with MATLAB/SIMULINK environment and implemented experimentally. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents a novel input current shaper based on a quasi‐active power factor correction (PFC) scheme. In this method, high power factor and low harmonic content are achieved by providing an auxiliary PFC circuit with a driving voltage which is derived from a third winding of the transformer of a cascaded dc/dc flyback converter. It eliminates the use of active switch and control circuit for PFC. The auxiliary winding provides a controlled voltage‐boost function for bulk capacitor without inducing a dead angle in the line current. Since the dc/dc converter operates at high switching frequency, the driving voltage is also of high switching frequency, which results in reducing the size of the magnetic components. Operating principles, analysis and experimental results of the proposed method are presented. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
本文提出了一种新型的有源交错并联的Boost软开关电路。在boost主开关两端并联一个有源辅助开关和关断缓冲吸收电容组成的有源缓冲吸收支路。使用该拓扑结构,Boost的主开关管可以实现零电流导通和零电压关断,二极管的反向恢复电流带来的能量损耗能够大大削减。并且,在整个开关周期期间,附加的辅助开关管都是零电压开关。在理论分析的基础上,试制了1台1.2kW实验样机  相似文献   

6.
Solar energy is a very cost efficient energy in terms of construction and maintenance that has no pollution and can be found everywhere. So, various converter topologies are used as an interface converter for solar panels. The boost converter is the conventional converter used in photovoltaic (PV) application. But, it has several problems such as instability in Continuous Conduction Mode (CCM), input inrush currents, short circuit protection and etc. These problems, lead to use Z-Source and quasi Z-Source Converter (qZSC) which have higher gain compared to traditional boost converter, lower current ripple at the input without using any extra filters, buck and boost capability, lower output ripple and higher reliability. In this paper a soft switching technique for qZSC converter with coupled inductor and without any auxiliary switch is proposed for PV application. By adding an auxiliary circuit, which includes a coupled inductor, diode and capacitor, soft switching condition is provided for all semiconductor elements of the proposed converter. The proposed converter is theoretically analyzed and to confirm the validity of the theoretical analysis, it is simulated by ORCAD and a laboratory prototype is built. The proposed converter shows six percent efficiency improvement in comparison with hard switching counterpart.  相似文献   

7.
In this paper, a new interleaved non‐isolated bidirectional dc–dc converter with capability of zero voltage switching and high voltage gain is proposed. In the proposed converter by using two coupled inductors and one capacitor, the voltage gain is extended. Moreover, by using only an auxiliary circuit that includes an inductor and two capacitors, the zero voltage switching (ZVS) of two used switches in the first phase of converter can be achieved. The ZVS operation of two used switches in the second phase is always obtained without using any extra auxiliary circuit. This converter similar to other interleaved converters has low input current ripple and low current stress on switches. In this paper, the proposed converter is analyzed in all operating modes, and also the voltage gain, required conditions for ZVS operation of switches, voltage and current stresses of all switches, and the value of input current ripple in both boost and buck operations are obtained. Finally, the accuracy performance of the proposed converter is verified through simulation results in EMTDC/PSCAD software. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, a two‐switch high‐frequency flyback transformer‐type zero voltage soft‐switching PWM DC‐DC converter using IGBTs is proposed. Effective applications for this power converter can be found in auxiliary power supplies of rolling stock transportation and electric vehicles. This power converter is basically composed of two active power switches and a flyback high‐frequency transformer. In addition to these, two passive lossless snubbers with power regeneration loops for energy recovery, consisting of a three‐winding auxiliary high‐frequency transformer, auxiliary capacitors and diodes are introduced to achieve zero voltage soft switching from light to full load conditions. Furthermore, this power converter has some advantages such as low cost circuit configuration, simple control scheme, and high efficiency. Its operating principle is described and to determine circuit parameters, some practical design considerations are discussed. The effectiveness of the proposed power converter is evaluated and compared with the hard switching PWM DC‐DC converter from an experimental point of view, and the comparative electromagnetic conduction and radiation noise characteristics of both DC‐DC power converter circuits are also depicted. © 2005 Wiley Periodicals, Inc. Electr Eng Jpn, 152(3): 74–81, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20081  相似文献   

9.
An interleaved DC‐DC converter with soft switching technique is presented. There are two converter modules in the adopted circuit to share the load power. Since the interleaved pulse‐width modulation (PWM) is adopted to control two circuit modules, the ripple currents at input and output sides are naturally reduced. Therefore the input and output capacitances can be reduced. In each circuit module, a conventional boost converter and a voltage doubler configuration with a coupled inductor are connected in series at the output side to achieve high step‐up voltage conversion ratio. Active snubber connected in parallel with boost inductor is adopted to limit voltage stress on active switch and to release the energy stored in the leakage and magnetizing inductances. Since asymmetrical PWM is used to control active switches, the leakage inductance and output capacitance of active switches are resonant in the transition interval. Thus, both active switches can be turned on at zero voltage switching. The resonant inductance and output capacitances at the secondary side of transformer are resonant to achieve zero current switching turn‐off for rectifier diodes. Therefore, the reverse recovery losses of fast recovery diodes are reduced. Finally, experiments based on a laboratory prototype rated at 400 W are presented to verify the effectiveness of the proposed converter. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, a non-isolated dual-input DC-DC converter with zero-voltage transition (ZVT) is proposed for renewable energy systems. The proposed converter has high step-up conversion gain without using any transformer or coupled inductors. The proposed structure consists of two boost cells, one diode-capacitor multiplier cell, and one ZVT auxiliary circuit. The main switches turn on and off under zero voltage condition and the auxiliary switch turns on under zero current condition and turns off under zero current and zero voltage conditions. Soft switching conditions, high efficiency, continuous current of input sources, low-voltage stress on switches, and returning the energy of the auxiliary circuit to the boost cell connected to the lower-voltage input are the main advantages of the proposed converter. The steady-state analysis of the converter and operation intervals are discussed. A 160-W prototype of the proposed converter is designed and implemented. Experimental results confirm the theoretical analysis. The efficiency reaches 96.7% at the nominal load by providing soft-switching for all switches. The proposed topology can be extended for multi-input applications by expanding the number of diode-capacitor multiplier and input boost cells.  相似文献   

11.
为提高Boost变换器传输效率,提出了一种运用辅助电感和箝位电路实现交错并联Boost电路软开关的拓扑结构,变换器不仅实现了主开关管的零电流开通和零电压关断,大大减少了二极管的反向恢复电流带来的能量损耗。同时实现了辅助开关管的零电压开关,降低了附加损耗。在原理仿真的基础上,设计试制了一台实验样机。实验结果给出了开关管波形,验证了软开关功能的实现。  相似文献   

12.
This paper describes a soft‐switching interleaved power factor correction (PFC) converter with a lossless snubber. AC–DC converters require a unity input power factor characteristic with highly efficient operation to prevent the inflow of harmonic current to the power source. The proposed PFC converter improves the input current ripple with interleave control. The converter realizes a high efficiency by the soft‐switching operation of all switching devices without a large auxiliary resonant circuit. This paper introduces the soft‐switching operation of the converter. In order to confirm the validity of the proposed converter, experiments with a prototype of the PFC converter have been performed. The experimental results indicate that the proposed converter can realize the soft‐switching operation of all switching devices, a reduction in the input current ripple, a unity power factor of 98% or more, a sinusoidal input current, and constant output voltage control. The efficiency of the proposed PFC converter with a lossless snubber is higher than that without the lossless snubber. The results presented in this paper confirm the validity of the proposed converter.  相似文献   

13.
提出一种新型非谐振型交错并联Boost零电压转换(ZVT)电路。在传统交错并联Boost拓扑基础上添加了一组由一个电感、两个电容、一个开关管、四个二极管组成的辅助网络,令主开关管实现了零电压开通与关断,辅助开关管实现了零电流开通与部分零电压关断,降低了开关损耗,提升了电路变换效率。软开关可在宽工作范围内有效实现,电路工作在连续电流模式(CCM),控制方式简明易行,辅助网络的引入没有给主开关管带来额外电流应力。通过复用部分辅助元件,提高了辅助网络利用率,减少了体积与费用;降低了开关过程中的dv/dt、di/dt,抑制了开关噪声。详细分析了电路拓扑结构、工作原理,并对主要参数进行了优化选取,最后通过实验验证了理论分析的正确性。  相似文献   

14.
新型ZVZCT PWM直流变换器族的研究   总被引:2,自引:0,他引:2  
提出了一种新型零电压零电流转换 (ZVZCT)软开关单元 ,并基于该开关单元 ,构造了BuckZVZCTPWM变换器和BoostZVZCTPWM变换器 ,形成新型ZVZCTPWM直流变换器族。详细分析了BuckZVZCTPWM变换器的工作原理 ,主开关管实现了零电压零电流开关 ,辅助开关管实现了零电流开通、零电压零电流关断 ,续流二极管实现了零电压零电流关断、零电压开通。该软开关单元不但适合于少子器件 ,而且适合于多子器件 ,同时保持PWM控制的特点。仿真分析和实验结果完全验证了理论分析的正确性  相似文献   

15.
This paper proposed a new single-ended primary inductor converter (SEPIC)-boost DC-DC converter that uses only one auxiliary switch to create soft switching condition for all semiconductor devices. The auxiliary circuit comprises one power switch (Sa), one resonant inductor (Lr), one resonant capacitor (Cr), and one diode (Do2). The auxiliary switch (Sa) controls the resonance during switching instants. The converter has simple structure and its control circuit remains pulse width modulation (PWM). Besides, the proposed converter has high voltage gain without using any transformer or coupled inductors. In addition, the auxiliary switch is not located in the main power path. Moreover, using soft switching techniques is the best way for reducing the size, weight, and volume of the converter. Furthermore, reduction of input inrush current and voltage stress for the main switch is obtained by using SEPIC-boost structure. A laboratory prototype converter is designed and implemented. The experimental results presented confirm the theoretical and features of the proposed converter.  相似文献   

16.
This paper proposes a new circuit topology of the three‐phase soft‐switching PWM inverter and PFC converter using IGBT power modules, which has the improved active auxiliary switch and edge resonant bridge leg‐commutation‐link soft‐switching snubber circuit with pulse current regenerative feedback loop as compared with the typical auxiliary resonant pole snubber discussed previously. This three‐phase soft‐switching PWM double converter is more suitable and acceptable for a large‐capacity uninterruptible power supply, PFC converter, utility‐interactive bidirectional converter, and so forth. In this paper, the soft‐switching operation and optimum circuit design of the novel type active auxiliary edge resonant bridge leg commutation link snubber treated here are described for high‐power applications. Both the main active power switches and the auxiliary active power switches achieve soft switching under the principles of ZVS or ZCS in this three‐phase inverter switching. This three‐phase soft‐switching commutation scheme can effectively minimize the switching surge‐related electromagnetic noise and the switching power losses of the power semiconductor devices; IGBTs and modules used here. This three‐phase inverter and rectifier coupled double converter system does not need any sensing circuit and its peripheral logic control circuits to detect the voltage or the current and does not require any unwanted chemical electrolytic capacitor to make the neutral point of the DC power supply voltage source. The performances of this power conditioner are proved on the basis of the experimental and simulation results. Because the power semiconductor switches (IGBT module packages) have a trade‐off relation in the switching fall time and tail current interval characteristics as well as the conductive saturation voltage characteristics, this three‐phase soft‐switching PWM double converter can improve actual efficiency in the output power ranges with a trench gate controlled MOS power semiconductor device which is much improved regarding low saturation voltage. The effectiveness of this is verified from a practical point of view. © 2006 Wiley Periodicals, Inc. Electr Eng Jpn, 155(4): 64–76, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20207  相似文献   

17.
为实现一种结构简单,高效,高频,低的电压应力,简于控制的软开关升压变换器,提出一种有源辅助谐振换流新型软开关变换器,即通过采用简单的有源辅助谐振网络实现了主、辅开关管的软开关,主开关管实现了零电压零电流开通、零电压关断,开关管电流电压应力小,辅助开关管实现了零电压零电流关断、零电流开通,特别适用于以绝缘栅双极型晶体管(...  相似文献   

18.
陆治国  郑路遥 《低压电器》2011,(12):56-60,63
给出了一种新型无源交错并联Boost软开关变换器的拓扑结构,对其工作原理进行了详细分析。该拓扑结构简单,在传统交错并联Boost变换器中加入了一个对称的无源辅助电路,实现了开关管的零电压开通和关断。分析了该变换器各阶段工作模态的等效电路和实现软开关的条件,给出了辅助谐振电路的设计,并对主电路进行了仿真研究,仿真结果验证了电路分析的正确性和可行性。  相似文献   

19.
In this paper, a pulse width modulation DC‐DC converter with high step‐up voltage gain is proposed. The proposed converter achieves high step‐up voltage gain with appropriate duty ratio, coupled inductor, and voltage multiplier technique. The energy stored in the leakage inductor of the coupled inductor can be recycled in the proposed converter. Moreover, because both main and auxiliary switches can be turned on with zero‐voltage switching, switching loss can be reduced by soft‐switching technique. So the overall conversion efficiency is improved significantly. The theoretical steady‐state analyses and the operating principles of the proposed converter are discussed in detail for both continuous conduction mode and discontinuous conduction mode. Finally, a laboratory prototype circuit of the proposed converter is implemented to verify the performance of the proposed converter. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
本文提出了一种新型的有源交错并联ZVT软开关电路,该电路是在普通交错并联Boost变换器的基础上增加耦合电感绕组和有源箝位辅助单元形成。耦合电感绕组的引入扩展了变换器的电压增益和减小了开关管的电压应力,因此减小了开关管导通损耗。耦合电感的漏感限制了输出二极管关断电流的下降率,抑止了二极管的反向恢复,大大减小了反向恢复电流引起的损耗。有源辅助开关和吸收电容组成的辅助电路吸收并无损的转移了漏感能量,消除了主开关管上的电压尖峰。在整个开关周期内,主管和辅助管都是零电压开关,大大减小了开关损耗。最后,设计了一台40V输入、380V输出的1kW试验样机。仿真和试验结果表明,所有的功率器件均为软开关工作,本电路特别适用于光伏发电系统中低电压输入、高电压输出的前段变换。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号