首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The divided wall column system is a promising energy-saving alternative for separating multi-component mixtures. However, high energy efficiency and stable operations can only be achieved with careful design of steady state operation and control scheme. In this study, the effects of liquid split and vapor split ratios on the energy efficiency and controllability of a divided wall column system for separating ethanol, n-propanol, and n-butanol were investigated. A region with high energy efficiency was identified. However, relative gain analysis found that the performance of multi-loops composition control would be very poor. Dynamic tests showed that multi-loop temperature control cannot return the product compositions to the desired values in case of feed composition disturbances. Outside this region, composition control can compensate for external disturbances such as feed flow rate and feed composition changes but not changes in operating region caused by internal variations such as liquid and vapor splits. Offsets in the product purities were found if temperature controls were used and there are disturbances in feed composition or changes in operating region caused by upsets in liquid and vapor splits. There is a trade-off between energy efficiency and controllability. A composition + temperature cascade scheme was proposed to stabilize the operation with high energy efficiency. The proposed scheme was able to maintain high product purity and reject external disturbances in feed flow and composition changes as well as internal disturbances such as changes in liquid and vapor splits.  相似文献   

2.
Gas hold‐up and bubble size distribution in a slurry bubble column (SBC) were measured using the advanced noninvasive ultrafast electron beam X‐ray tomography technique. Experiments have been performed in a cylindrical column (DT = 0.07 m) with air and water as the gas and liquid phase and spherical glass particles (dP = 100 μm) as solids. The effects of solid concentration (0 ≤ Cs ≤ 0.36) and superficial gas velocity (0.02 ≤ UG ≤ 0.05 m/s) on the flow structure, radial gas hold‐up profile and approximate bubble size distribution at different column heights in a SBC were studied. Bubble coalescence regime was observed with addition of solid particles; however, at higher solid concentrations, larger bubble slugs were found to break‐up. The approximate bubble size distribution and radial gas hold‐up was found to be dependent on UG and Cs. The average bubble diameter calculated from the approximate bubble size distribution was increasing with increase of UG. The average gas hold‐up was calculated as a function of UG and agrees satisfactorily with previously published findings. The average gas hold‐up was also predicted as a function of Cs and agrees well for low Cs and disagrees for high Cs with findings of previous literature. © 2012 American Institute of Chemical Engineers AIChE J, 59: 1709–1722, 2013  相似文献   

3.
BACKGROUND: In order to improve the performance of a counter‐current bubble column, radial variations of the gas hold‐ups and mean hold‐ups were investigated in a 0.160 m i.d. bubble column using electrical resistance tomography with two axial locations (Plane 1 and Plane 2). In all experiments the liquid phase was tap water and the gas phase air. The superficial gas velocity was varied from 0.02 to 0.25 m s?1, and the liquid velocity varied from 0 to 0.01 m s?1. The effect of liquid velocity on the distribution of mean hold‐ups and radial gas hold‐ups is discussed. RESULTS: The gas hold‐up profile in a gas–liquid counter‐current bubble column was determined by electrical resistance tomography. The liquid velocity slightly influences the mean hold‐up and radial hold‐up distribution under the selected operating conditions and the liquid flow improves the transition gas velocity from a homogeneous regime to a heterogeneous regime. Meanwhile, the radial gas hold‐up profiles are steeper at the central region of the column with increasing gas velocity. Moreover, the gas hold‐up in the centre of the column becomes steeper with increasing liquid velocity. CONCLUSIONS: The value of mean gas hold‐ups slightly increases with increasing downward liquid velocity, and more than mean gas hold‐ups in batch and co‐current operation. According to the experimental results, an empirical correlation for the centreline gas hold‐up is obtained based on the effects of gas velocity, liquid velocity, and ratio of axial height to column diameter. The values calculated in this way are in close agreement with experimental data, and compare with literature data on gas hold‐ups at the centre of the column. Copyright © 2010 Society of Chemical Industry  相似文献   

4.
The performance of the reactive distillation dividing‐wall column for coproduction of ethyl acetate and butyl acetate was experimentally studied. n‐Butanol and ethanol are raw reaction materials that react with acetic acid in the reaction zone to produce n‐butyl acetate and ethyl acetate, respectively. n‐Butyl acetate is not only a product, but also acts to remove water generated by the esterification reactions. The effects of various parameters, such as catalyst loading per stage, reflux ratio, liquid split and molar feed ratios, ethyl acetate/n‐butyl acetate purity, pressure drop, and total energy consumption, are investigated. Results show that ethanol could be completely converted and the products could be easily separated, which shows great industrial application potential in the coproduction of ethyl acetate and n‐butyl acetate.  相似文献   

5.
隔板精馏塔(DWC)在节能和节省设备投资方面具有十分突出的优势,隔板精馏塔中隔板位置是重要的设计变量,影响分离效果及能耗,当进料中含有气相时这种影响更加显著。选用苯、甲苯和对二甲苯三元物系,研究了进料的气相分率对隔板位置的影响并确定最优隔板位置。采用严格模拟方法,以年度总费用(TAC)为评价指标,比较不同进料气相分率下隔板塔的经济性,其中气相进料较液相进料TAC最高可节省23.33%。并通过灵敏度分析展示了在进料中含有气相时确定最优隔板位置的重要性。  相似文献   

6.
隔板精馏塔(DWC)在节能和节省设备投资方面具有十分突出的优势,隔板精馏塔中隔板位置是重要的设计变量,影响分离效果及能耗,当进料中含有气相时这种影响更加显著。选用苯、甲苯和对二甲苯三元物系,研究了进料的气相分率对隔板位置的影响并确定最优隔板位置。采用严格模拟方法,以年度总费用(TAC)为评价指标,比较不同进料气相分率下隔板塔的经济性,其中气相进料较液相进料TAC最高可节省23.33%。并通过灵敏度分析展示了在进料中含有气相时确定最优隔板位置的重要性。  相似文献   

7.
Hydrodynamic and mass transfer characteristics of water–air system in a co‐current downflow contacting column (CDCC) were studied for various nozzle diameters at different superficial gas velocities and liquid re‐circulation rates. Gas hold‐up and liquid‐side mass transfer coefficient increased with increasing superficial gas velocity and liquid flow rate but decreased with increasing nozzle diameter. It is shown that correlations developed, which are based on liquid kinetic power per liquid volume present in the column, and superficial gas velocity explains gas hold‐up and the mass transfer coefficient within an error 20% for all gas and liquid flow rates and nozzle diameters used. The constants of correlations for gas hold‐up and mass transfer coefficient were found to be considerably different from other gas–liquid contacting systems. © 2003 Society of Chemical Industry  相似文献   

8.
Packed columns are normally operated countercurrently in the vapor‐continuous regime. At specific combinations of liquid and vapor loads these columns flood. This article proposes that flooding is a form of second order (or “continuous”) phase transition from vapor‐continuous to liquid‐continuous operation. Thus, flooding is unambiguously defined to be the set of those vapor/liquid flow combinations, {CL, CSf}, that cause a liquid cluster to form that spans the diameter of column. These statements imply that a law of corresponding hydraulic states exists for packed columns. By this, we mean that sets of {CL, CS, (Δp/Z)2?} data taken with a specific packing and a specific vapor/liquid system exhibit a significant collapse when they are renormalized to {fL, (Δp/ρLgZ)2?} (where fL is the fractional approach to flood at constant liquid load). The renormalized dataset then applies to any vapor/liquid system using that particular packing. Renormalization thus forms the basis of a method for predicting column pressure drops and flood points for any column using the particular packing being studied. We demonstrate how the renormalization procedure is carried out by analyzing readily available air/water data for a number of different packings. We then show that a version of the Wallis equation can be used to correlate packed column flooding data successfully. Further, we demonstrate that the variation of the Wallis parameters with the equivalent diameters of packings in a geometrically similar family leads to a complete characterization of the effects of the physical properties of liquid on the flooding locus for these packings through the Bond number. This last result is a direct result of generalized homogeneity considerations. Finally, we show that there exists an even more general formulation of the law of corresponding hydraulic states that applies to all packings regardless of type, size, or material of construction. © 2011 American Institute of Chemical Engineers AIChE J, 58: 1671–1682, 2012  相似文献   

9.
Accurate prediction of dispersed phase droplet behavior is crucial to the design and scaling‐up of an extraction column. In this article, the dispersed droplet velocity algorithm and the diameter algorithm in a liquid–liquid two‐phase flow have been developed based on the bubble velocity model in gas–liquid two‐phase flow of Lucas [Measurement Science & Technology. 749, 758(2005)] and Shen [International Journal of Multiphase Flow. 593, 617(2005)]. Hydrodynamic characteristics, including droplet diameter, holdup and droplet velocity, were measured using a self‐made four‐sensor optical fiber probe in a 38 mm‐diameter pulsed sieve‐plate extraction column. Water and kerosene were used as continuous and dispersed phases, respectively. The influences of the pulsed intensity, the continuous and dispersed phase superficial velocities on the hydrodynamic characteristics were investigated. The experimental results show that it is reliable to use a four‐sensor optical probe to measure the hydrodynamic characteristics of a pulsed extraction column. © 2016 American Institute of Chemical Engineers AIChE J, 63: 801–811, 2017  相似文献   

10.
Y. Du  J. Guo 《化学工程与技术》2009,32(12):1916-1921
With Hβ zeolite as the catalyst and θ rings as the fillings, the technological process of synthesizing n‐butyl acetate with acetic acid and n‐butanol in a Φ 30 mm and 2 m tall catalytic rectifying column was studied. The influence of factors such as catalyst loading height, material feed site, reflux ratio and feed rate on the esterification reaction and the rectification effect was investigated. The study results suggested that the appropriate conditions of n‐butyl acetate synthesis by catalytic rectification include: The height ratio of the rectifying section, the reaction section and the stripping section is 1:1:1; acetic acid and n‐butanol are fed in upside and downside of the reaction section, respectively; the reflux ratio is 2.5; the liquid hourly space velocity of n‐butanol is 0.64 h–1. Under these conditions, the mass fraction of n‐butyl acetate in the column bottom is 98.64 %, and the total yield of n‐butyl acetate is 91.5 %.  相似文献   

11.
The gas–liquid interfacial area and mass transfer coefficient for absorption of oxygen from air into water, aqueous glycerol solutions up to 1.5% (w/w) and fermentation medium containing glucose up to a 3% concentration were determined in a co‐current down flow contacting column (CDCC; 0.05 m i.d. and 0.8 m length). Experimental studies were conducted using various nozzle diameters at different gas and re‐circulation liquid rates. Specific interfacial area (a) is determined from the fractional gas hold‐up (εG) and the average bubble diameter (db). Once the interfacial area is determined, the volumetric mass transfer coefficient (kLa) is then used to evaluate the film mass transfer coefficient in the CDCC. The effects of operating conditions and liquid properties on the specific interfacial area were investigated. The values of interfacial area in air–aqueous glycerol solutions and fermentation media were found to be lower than those in the air–water system. As far as experimental conditions were concerned, the values of interfacial area obtained from this study were found to be considerably higher than those of the literature values of conventional bubble columns. The penetration theory is used to interpret the film mass transfer coefficient and results match the experimental kL data reasonably well. Copyright © 2006 Society of Chemical Industry  相似文献   

12.
Heat transfer was investigated in an insulated packed bed column with co-current downflow of gas and liquid under constant and periodically modulated gas–liquid feed temperature. Bed temperatures at three axial positions were assessed at steady state for different insulating systems, different gas and liquid flow rates and system pressure. The experimental profiles recorded were modeled with a dynamic pseudo-homogeneous one parameter model to analyze the effect of operating conditions and to deduce coefficients of overall (U) and bed to wall (hW) heat transfer. It appears that the heat transfer is strongly affected by the system pressure, whereas the liquid flow rate has a smaller influence. The experimental data of hW were correlated with the operating conditions leading to a small average error of 7% in the correlation. Condensation of water vapor occurring in the column seems to contribute to the heat transfer inside the packed bed. Several dynamic experiments modulating the feed temperature were also conducted and described with the help of the dynamic model. Predictions with the fitted values of U were in good agreement with experiments and give confidence to apply this model in the investigation of the catalytic wet air oxidation of phenol over carbon conducted in a trickle bed reactor under temperature feed modulation.  相似文献   

13.
In this study, the volumetric overall mass transfer and phases axial mixing coefficients have been investigated in a pilot plant of an L‐shaped pulsed packed extraction column by using two liquid systems of toluene/acetone/water and n‐butyl/acetone/water. The mass transfer performance has been evaluated using two methods of axial dispersion and a plug flow model. The effect of the operational variables and physical properties, including the dispersed and continuous phases flow rates, pulsation intensity, and interfacial tension, on mass transfer and phases axial mixing coefficients have been considered. It has been found that the pulsation intensity and the continuous phase flow rate seriously affect the mass transfer coefficient, however, the dispersed phase flow rate has a weaker effect. Also, the axial mixing of a phase is strongly affected by the pulsation intensity and the flow rate of the phase itself and it is not affected by the second phase flow rate. Finally, new correlations are proposed to accurately predict the mass transfer and axial mixing coefficients.  相似文献   

14.
The iodine‐sulfur thermochemical water‐splitting cycle (I‐S process) is one of the highly efficient, CO2‐free, massive hydrogen production methods. We simulated the I‐S process through commercial software programs Aspen Plus and OLI database with the aid of self‐developed models to analyze the overall running status of the process and to decrease the investment and time consumption of experiments. A two‐phase separator model operating at 353 K and an electro‐electrodialysis (EED) cell model working at 338 K were built on the basis of experimental data. The entire flow sheet of the I‐S process was modeled based on the two self‐developed models. The simulation models were validated through the experimental results obtained from the closed cycle I‐S facility (IS‐10) in our laboratory. By employing the simulation program, sensitivity analyses of the important parameters in the process were carried out, including the ratio of the distillate to the feed rate of the H2SO4 distillation column, reflux ratio of the H2SO4 column, H2SO4 conversion ratio, HI molality in the EED cathode outlet stream, and HI mole fraction in the liquid and vapor distillates of the HI distillation column. The key parameters significantly affecting the input duty were determined; that is, the ratio of the distillate to the feed rate of the H2SO4 distillation column and the HI molality in the EED cathode outlet stream. The optimal values of the analyzed parameters were also discussed. The simulation program we developed is a useful tool that can evaluate and optimize the I‐S process. © 2013 American Institute of Chemical Engineers AIChE J 60: 546–558, 2014  相似文献   

15.
A better understanding of pulsed liquid-liquid extraction columns was obtained by using an online digital image analysis system to characterize emulsion drop. The mass transfer of acetic acid from dispersed phase (ethyl acetate) to continuous phase (water) was studied under standard conditions. The system enabled drop size distribution (DSD) to be measured as a function of physical and thermodynamic parameters. The surface tension was investigated by static contact angle measurement. Mass transfer and energy transfer, characterized by the surface/volume ratio of the droplets were compared with the working parameters in order to interpret restrictive phenomena such as hold up and column efficiency. The experimental values of Sauter diameter (d32) and those predicted by a correlation proposed in the literature are in good agreement. However, the adhesion work between liquid and PTFE plate surface indicates that interface property variations, as a function of solute concentration, must be taken into account in the theoretical correlations. It was found that hold up and separation efficiency depend mainly on the stirring rate. These results show that online image analysis can be used as a process control of a liquid-liquid extraction column in order to optimize the mixing phenomena and the DSD, the key parameter of extraction efficiency.  相似文献   

16.
Novel processes involving ionic liquids with refrigerant gases have recently been developed. Here, the complete global phase behavior has been measured for the refrigerant gas, 1,1,1,2‐tetrafluoroethane (R‐134a) and 1‐n‐alkyl‐3‐methyl‐imidazolium ionic liquids with the anions hexafluorophosphate [PF6], tetrafluoroborate [BF4] and bis(trifluoromethylsulfonyl)imide [Tf2N] from ~0°C to 105°C and to 33 MPa. All of the systems studied were Type V from the classification scheme of Scott‐van Konynenburg with regions of vapor‐liquid equilibrium, miscible/critical regions, vapor‐liquid‐liquid equilibrium, and upper and lower critical endpoints (UCEP and LCEP). The effect of the alkyl chain length has been investigated, for ethyl‐([EMIm]), n‐butyl‐([BMIm]), and n‐hexyl‐([HMIm]). With increasing chain length, the temperature of the lower critical end points increases and pressure at the mixture critical points decrease. With a common cation, the temperature of the LCEP increased and the mixture critical point pressures decreased in the order of [BF4], [PF6], and [Tf2N]. © 2008 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

17.
The influence of water vapor on the adsorption of CO2 in carbon capture by vacuum swing adsorption (VSA) was described. VSA experiments with single and multilayered columns using alumina and zeolite 13X were conducted to understand the migration of water. The penetration depth of water in the column could be controlled by maintaining the purge‐to‐feed ratio above a critical value. At high water content in the feed (>4%), employment of a water adsorbing prelayer was essential to prevent failure of the carbon capture process. A simple axial working capacity model predicts the penetration depth of water in the column for a given feed temperature and adsorption isotherm, and the layering ratio can be selected accordingly. Although water is detrimental to CO2 capture with polar adsorbents, long‐term recovery of CO2 is still possible by appropriate layering and ensuring an adequate purge‐to‐feed ratio. © 2013 American Institute of Chemical Engineers AIChE J 60: 673–689, 2014  相似文献   

18.
A simulation program has been developed and used to study the condensate treatment process in a kraft pulp mill consisting of a stripper, a methanol column and a decanter. The simulations require rigorous models for vapor‐liquid and liquid‐liquid equilibrium calculations. The Wilson equation and the NRTL equation (non random two liquids) have been used for these calculations. New data were included in the flowsheeting program Aspen Plus for seven volatile compounds, to perform accurate calculations of both vapor‐liquid and liquid‐liquid equilibria. Simulations were compared with measurements on the industrial condensate treatment process and the results of the simulations were used to improve the process. By changing the position of the decanter in the process, the COD (chemical oxygen demand) content in the stripped condensate was decreased from 700 to 300 mg O2/l. The effect of various process parameters, such as the vapor fraction after the stripper and the flow rate of secondary steam to both the stripper and the methanol column, on the quality of clean condensate were investigated. The design of the stripper and the methanol column was studied by calculating the optimal feed location for various numbers of trays in the columns. The results showed that the feed location in the methanol column would be more optimal if it were located higher up in the column (above tray 5–7) instead of above tray 10, which was the case in the industrial process investigated.  相似文献   

19.
Even though many experimental investigations are reported on this subject of liquid velocity patterns in bubble columns, most of the reported work is restricted to measurements at the near wall regions, columns without internals, and in low dispersed phase hold‐ups. In the present work, a non‐invasive radioactive particle tracking technique was employed to quantify the hydrodynamic parameters in 120 mm diameter bubble column with, and without vertical rod internals, using air/water system as the working fluids. The superficial air velocities cover a wide range of flow regimes: from 14 to 265 mm/s. Experiments were performed for two internals configurations with percentage obstruction area varied from 0 (without internals) to 11.7%. We report that the liquid phase hydrodynamics depends strongly on superficial gas velocity and internals. © 2017 American Institute of Chemical Engineers AIChE J, 2017  相似文献   

20.
The gas–liquid volumetric mass transfer coefficient was determined by the dynamic oxygen absorption technique using a polarographic dissolved oxygen probe and the gas–liquid interfacial area was measured using dual‐tip conductivity probes in a bubble column slurry reactor at ambient temperature and normal pressure. The solid particles used were ultrafine hollow glass microspheres with a mean diameter of 8.624 µm. The effects of various axial locations (height–diameter ratio = 1–12), superficial gas velocity (uG = 0.011–0.085 m/s) and solid concentration (εS = 0–30 wt.%) on the gas–liquid volumetric mass transfer coefficient kLaL and liquid‐side mass transfer coefficient kL were discussed in detail in the range of operating variables investigated. Empirical correlations by dimensional analysis were obtained and feed‐forward back propagation neural network models were employed to predict the gas–liquid volumetric mass transfer coefficient and liquid‐side mass transfer coefficient for an air–water–hollow glass microspheres system in a commercial‐scale bubble column slurry reactor. © 2012 Canadian Society for Chemical Engineering  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号