首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Water-assisted extrusion process has been used to successfully prepare polypropylene (PP)/clay nanocomposites with high degree of clay delamination and markedly improved rheological, thermal and mechanical properties. PP-graft-maleic anhydride (PP-g-MA)-based nanocomposites and masterbatches were synthesized from untreated clay and organoclay, respectively, and fully characterized. The effects of using high-shear rates and water injection during the melt-compounding were examined. A mechanism explaining the formation of such nanocomposites is then proposed. The best clay dispersion and properties improvements of PP-g-MA/organoclay nanocomposites and masterbatches were obtained using high-shear rates and water injection (synergy effect). PP-based nanocomposites were then synthesized by dilution of PP-g-MA-based masterbatches into neat PP. For comparison, nanocomposites were also prepared by a one-pot process where PP, PP-g-MA and organoclay are directly melt-blended with or without water injection. The nanocomposites prepared by dilution into PP of a masterbatch prepared through water-assisted extrusion showed the highest clay dispersion and consequently the best thermal, mechanical and rheological properties.  相似文献   

2.
Woo Jin Choi  Young Jin Kim 《Polymer》2004,45(17):6045-6057
Clay organifier with hydroxyl end-group and relatively high molecular weight was synthesized. The clay treated with the organifier was suspended in DMF and the dispersibility of organoclay in polyurethane matrix was enhanced by applying the sonication to the suspension of organoclay in DMF. The d-spacing of organoclay was found to be 2.29 nm compared to 1.18 nm of pristine montmorillonite. The polyurethane/clay nanocomposites formed an intercalated structure with some disorder and their d-spacings were about 2.6-2.7 nm. The barrier property, thermal stability and tensile properties significantly increased with increasing the dispersibility of organoclay. A 2.9-fold increase in tensile strength with 1 wt% of well-dispersed organoclay, a 41% decrease in oxygen permeability and a 1.7-fold increase in Young's modulus at 5 wt% of well-dispersed organoclay were achieved.  相似文献   

3.
It is well known that a so-called “three-dimensional filler network structure” will be constructed in the polymer/layered silicate nanocomposites when the content of layered clay reaches a threshold value, at which the silicate sheets are incapable of freely rotating, due to physical jamming and connecting of the nanodispersed layered silicate. In this article, the effect of such clay network on the mobility and relaxation of macromolecular chains in isotactic polypropylene(iPP)/organoclay nanocomposites was investigated in detail with a combination of DMTA, DSC, TGA, TEM, rheometry and melt flow index measurements. The main aim is to establish a relationship between the mesoscopic filler network structure and the macroscopic properties of the polymer nanocomposites, particularly to explore the role of the clay network on the mobility and relaxation of macromolecular chains. It was found that the nanodispersed clay tactoids and layers play less important or dominant roles on the mobility of iPP chains depending on the formation of percolating filler network. The turning point of macroscopic properties appeared at 1 wt% organoclay content. Before this point, the effect of organoclay can be negligible, and the increase of chain mobility was ascribed to the decrease of molecular weight of polymer chains, as commonly occurs during dynamic melt processing; after this point, however, a reduced mobility of chains and a retarded chain relaxation were observed and attributed to the formation of a mesoscopic filler network. The essential features of such a mesoscopic organoclay network were estimated and discussed on the basis of stress relaxation and structural reversion measurements. A schematic model was proposed to describe the different relaxation and motion behaviors of macromolecular chains in the unfilled polymer and the filled hybrids with partial and percolated organoclay networks, respectively.  相似文献   

4.
Polypropylene/clay nanocomposite (PCN) containing 1 wt% organo-modified clay was prepared by latex technology, previously successfully applied for preparation of carbon nanotubes (CNTs)/polymer composites. The level of dispersion of organoclay and the microstructure of the resulting PCNs were characterized by means of X-ray diffraction analysis, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The obtained results have demonstrated that the latex technique represents a promising method for preparation of PP/clay nanocomposites with good dispersion of exfoliated nanoclay particles. The influence of clay nanoparticles on nonisothermal crystallization of PCN was investigated by DSC. The crystallization onset temperature of the matrix rises for about 5 °C when crystallizing from the quiescent melt. Improved thermal stability of PP/nanoclay was observed as evaluated by TGA. The dynamic mechanical analysis reveals an increase in storage modulus of PP matrix in the nanocomposites for 30% over a temperature range, indicating an increase in the stiffness of the material with the addition of organically modified clay.  相似文献   

5.
New polypropylene (PP)-graft-maleic anhydride (PP-g-MA) samples have been successfully synthesized by adding N-bromosuccinimide (NBS) during the reactive extrusion process. These NBS-mediated PP-g-MAs possess higher graft content than classic PP-g-MAs (i.e. without NBS) while they keep acceptable molar masses. NBS-mediated PP-g-MAs were used as matrices in model PP-g-MA/organoclay nanocomposites and compared with commercial and home-made classic PP-g-MAs in order to evaluate their ability to disperse the clay. Significantly better degrees of clay delamination and dispersion were reached using NBS-mediated PP-g-MAs than with classic PP-g-MAs. As expected, PP-g-MAs having high graft content showed the best clay dispersion. Within the examined range of molar masses, the PP-g-MA molar mass had no influence on the clay dispersion. However PP-g-MAs exhibiting important reduction of crystallinity lead to poor clay dispersion whatever the graft content. The PP-g-MA/organoclay nanocomposite prepared using the selected “optimized” NBS-mediated PP-g-MA exhibited the best improvement of thermal properties and one of the best clay dispersions. PP/PP-g-MA blends were prepared to evaluate the miscibility between PP and selected PP-g-MAs. No problem of miscibility between the selected NBS-mediated PP-g-MA and PP was noticed. Finally the PP/organoclay prepared using the selected NBS-mediated PP-g-MA as compatibilizer showed much better clay dispersion and thermal stability than the one prepared with the corresponding classic PP-g-MA, thus establishing the interest to use such new NBS-mediated PP-g-MAs as compatibilizers.  相似文献   

6.
Nanocomposites containing a thermoplastic blend and organophilic layered clay (organoclay) were produced by melt compounding. The blend composition was kept constant [polyamide 6 (PA6) 70 wt % + polypropylene (PP) 30 wt %], whereas the organoclay content was varied between 0 and 10 wt %. The mechanical properties of the nanocomposites were determined on injection‐molded specimens in both tensile and flexural loading. Highest strength values were observed at an organoclay content of 4 wt % for the blends. The flexural strength was superior to the tensile one, which was traced to the effect of the molding‐induced skin‐core structure. Increasing organoclay amount resulted in severe material embrittlement reflected in a drop of both strength and strain values. The morphology of the nanocomposites was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy‐dispersion X‐ray analysis (EDX), and X‐ray diffraction (XRD). It was established that the organoclay is well dispersed (exfoliated) and preferentially embedded in the PA6 phase. Further, the exfoliation degree of the organoclay decreased with increasing organoclay content. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 175–189, 2004  相似文献   

7.
Polyamide 66/clay nanocomposites (PA66CN) were prepared via melt compounding method by using a new kind of organophilic clay, which was obtained through co-intercalation of epoxy resin and quaternary ammonium into Na-montmorillonite. The silicate layers were dispersed homogeneously and nearly exfoliated in polyamide 66 (PA66) matrix. The introduction of silicate layers induced the appearance of the γ phase in PA66CN at room temperature, more clay loadings would amplify this phenomenon; the addition of clay also changed the structure of the α crystalline phase. The presence of silicate layers increased the crystallization rate and had a strong hetero phase nucleation effect on PA66 matrix. The lower Brill transition temperature of PA66CN can be attributed to the strong interaction between polyamide chains and surfaces of silicate layers.  相似文献   

8.
Diglycidyl ethers of bisphenol‐A (DGEBA) epoxy resin, filled separately with organoclay (OC) and unmodified clay (UC), were synthesized at room temperature and at high temperature (80 °C) by mechanical shear mixing. The room temperature curing (RTC) and high temperature curing (HTC) were carried out with the addition of triethylene tetramine (TETA) and diaminodiphenylmethane (DDM) curing agents respectively. The OC used was alkyl ammonium modified montmorillonite (MMT) and the UC was Na+‐MMT. X‐ray diffraction (XRD) and transmission electron microscopy (TEM) were used to study the structure and morphology of the nanocomposites. The influence of OC and UC particles on rheology and curing characteristics was studied. The rate of increase in viscosity was higher for OC‐filled resin than that of the UC‐filled resin. The curing study showed that the amine ions of the OC aided the polymerization process and favoured the curing at low temperature over the curing of unfilled epoxy resin. The tensile properties were enhanced for epoxy filled with OC particles rather than those filled with UC particles. Copyright © 2005 Society of Chemical Industry  相似文献   

9.
Through using modified masterbatch method which comprised the wet kneading and intercalated modifiers process, the fully exfoliated nylon clay hybrids (NCHs) were achieved. In the wet kneading procedure, the organoclay plates were easily wetting by the intercalated modifiers. Then the shearing force could completely exfoliate the organoclay with nylon 6 matrix even which only had lower molecular weight during the extrusion process. NCEs and NCAs, two series of NCHs, were prepared from the intercalated modifiers, alkylamide and polyamide, respectively. The XRD and TEM examinations show that the fully exfoliated NCHs can easily be made. The NCEs show a faster crystallization rate because alkylamide with the lower molecular length and the melting temperature act as a soft segment to make crystallization more easily and more regularly. The tensile test shows that the NCEs have higher values of modulus and yield strength and the NCAs can keep better elongation properties. Furthermore, the tensile specimen shows a cone‐like fracture, which is considered more perfectly exfoliated and arranged because of the good interaction between the silicate plates and nylon 6. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
Clay‐dispersed poly(styrene‐co‐acrylonitrile) nanocomposites (PSAN) were synthesized by a free radical polymerization process. The montmorillonite (MMT) was modified by a cationic surfactant hexadecyltrimethylammonium chloride. The structures of PSAN were determined by wide‐angle X‐ray diffraction and FTIR spectroscopy. The dispersion of silicate layers in the polymer matrix was also revealed by transmission electron microscopy (TEM). It was confirmed that the clay was intercalated and exfoliated in the PSAN matrix. The increased thermal stability of PSAN with the addition of clay was observed by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The dielectric properties of PSAN were measured in the frequency range 100 Hz to 1 MHz at 35–70°C. It was found that the dielectric constant from the dipole orientation had been suppressed due to the intercalation of clay. The dielectric loss is strongly related to the residual sodium content of clay, which increases as the sodium content increases by the addition of clay. Copyright © 2004 Society of Chemical Industry  相似文献   

11.
Nanocomposites of polypropylene with organically modified clays were compounded in a twin‐screw extruder by a two‐step melt compounding of three components, i.e., polypropylene, maleic anhydride grafted polypropylene (PPgMA), and organically modified clay. The effect of PPgMA compatibilizers, including PH‐200, Epolene‐43, Polybond‐3002, and Polybond‐3200, with a wide range of maleic anhydride (MA) content and molecular weight was examined. Nanocomposites' morphologies and mechanical properties such as stiffness, strength, and impact resistance were investigated. X‐ray diffraction patterns showed that the dispersion morphology of clay particles seemed to be determined in the first compounding step and the further exfoliation of clays didn't occur in the second compounding step. As the ratio of PPgMA to clay increased, the clay particles were dispersed more uniformly in the matrix resin. As the dispersibility of clays was enhanced, the reinforcement effect of the clays increased; however, impact resistance decreased. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 427–433, 2005  相似文献   

12.
In this article, we describe a method used to prepare an in situ sodium‐activated, organomodified bentonite clay/styrene–butadiene rubber nanocomposite master batch via a latex blending technique. The clay master batch was used for compound formulation. Octadecyl amine was used as an organic intercalate. The clay was purchased from local suppliers and was very cheap. Sodium chloride was used for in situ activation of the clay. The wide‐angle X‐ray diffraction data indicated that the in situ sodium activation helped to increase the intergallery distance from 1.28 to 1.88 nm. A transmission electron micrograph indicated intercalation and partial exfoliation. The thermal properties were relatively better in the case of the sodium‐activated, organomodified bentonite‐clay‐containing compound. A substantial improvement in physical properties such as the modulus, tensile strength, tear strength, and elongation at break was observed in the case of the in situ sodium‐activated compound. A cation‐exchange capacity equivalent (of the clay) of 1.5 times the octadecyl amine was the optimum dose for the modification. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
A new liquid–liquid method for the synthesis of epoxy nanocomposites was developed. This new method improved the dispersion and exfoliation of the organoclay in the polymer matrix, thus improving the end‐use properties. The microstructure and physical properties of the clay/epoxy nanocomposite synthesized by the new method were studied. Rheological tests of the uncured epoxy–organoclay system demonstrated that this method resulted in a great increase in viscosity, much more than the most commonly used direct‐mixing method. The Krieger–Dougherty model successfully described the dispersion of the clay layers in the uncured epoxy. In the 5 wt % organoclay nanocomposite, compressive tests on the cured samples showed that there was a 45% increase in the maximum strength, a 10% increase in the yield strength, and a 26% increase in the modulus over the pure epoxy–amine cured system. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4286–4296, 2006  相似文献   

14.
Liquid‐crystalline epoxy–organoclay nanocomposites were synthesized based on two different liquid‐crystalline epoxy monomers, 4, 4′‐diglycidyloxybiphenyl (BP) and hydroquinone bis(4‐epoxypropylbenzoate) (HB). The X‐ray diffraction patterns of BP–organoclay (93A) hybrids indicate that BP diffuses into the organoclay layers and increases d‐spacing from 2.3 to 3.7 nm either in a solvent or in the melting state. The dynamic differential scanning calorimetry results indicate that the alkylammonium ion in the clay gallery catalyzes the epoxy ring‐opening reaction with a diamine curing agent. The fast intergallery polymerization forms the exfoliated nanocomposite if the content of organoclay is below 2 %. But an intercalated nanocomposite is obtained with an increase of organoclay to 10 %. The nanocomposite with 5 % of organoclay is a mixture of the two types. Polarizing optical microscopy photographs of the cured products showed that the liquid‐crystalline phase is formed with or without organoclay. Copyright © 2005 Society of Chemical Industry  相似文献   

15.
Wood plastic composites (WPCs) are attracting a lot of interests because they are economic, environmentally friendly, and show fairly good performance. To improve the performance of a wood/polypropylene (PP) composite, an organoclay was incorporated as a nanosize filler in this work. WPCs were prepared by melt blending followed by compression molding, and their performance was investigated by universal testing machine, izod impact tester, dynamic mechanical analyzer, thermal mechanical analyzer, differential scanning calorimetry, and TGA. Maleic anhydride polypropylene copolymer (MAPP) was used to increase compatibility between the PP matrix and wood particles and also improve the dispersion and exfoliation of the organoclay in the PP matrix. XRD analysis showed that the matrix of the WPCs with organoclay had intercalated structure. The SEM images of the WPCs with MAPP showed improved interfacial adhesion between the matrix and wood particles. The degree of water absorption increased with immersion time, but it could be restrained by incorporating MAPP. The performance of the WPCs was improved by the incorporation of the organoclay. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
The mechanical and thermomechanical properties as well as microstructures of polypropylene/nylon 6/clay nanocomposites prepared by varying the loading of PP‐MA compatibilizer and organoclay (OMMT) were investigated. The compatibilizer PP‐MA was used to improve the adhesion between the phases of polymers and the dispersion of OMMT in polymer matrix. Improvement of interfacial adhesion between the PP and PA6 phases occurred after the addition of PP‐MA as confirmed by SEM micrographs. Moreover, as shown by the DSC thermograms and XRD results, the degree of crystallinity of PA6 decreased in the presence of PP‐MA. The presence of OMMT increased the tensile modulus as a function of OMMT loading due to the good dispersion of OMMT in the matrix. The insertion of polymer chains between clay platelets was verified by both XRD and TEM techniques. The viscosity of the nanocomposites decreased as PP‐MA loading increased due to the change in sizes of PA6 dispersed phase, and the viscosity increased as OMMT loading increased due to the interaction between the clay platelets and polymer chains. The clay platelets were located at the interface between PP and PA6 as confirmed by both SEM and TEM. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
Polypropylene/organoclay nanocomposites modified with different maleic anhydride grafted polypropylene (PPgMA) compatibilizers were compounded on a twin‐screw extruder. The effectiveness of the feeding sequence and compatibilizer type toward the dispersion of organoclay into PP matrix was critically studied. The composites prepared with side feed appeared to provide better dispersion and modulus improvement over that with hopper feed. The effect of PPgMA compatibilizers, including PB3150, PB3200, PB3000, and E43, with a wide range of maleic anhydride (MA) content and molecular weight was also examined. The structure was investigated with X‐ray diffraction and transmission electron microscopy. The relative complex viscosity curves also revealed a systematic trend with the extent of exfoliation and showed promise for quantifying the hybrid structure of the nanocomposites. Mechanical properties were determined by dynamical mechanical analysis and tensile and impact tests. Maleated polypropylene with low‐melt flow index and moderate MA content enhanced clay dispersion and resulted in significant improvement in tensile modulus of the nanocomposites. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 100–112, 2004  相似文献   

18.
This study investigated the microstructural evolution of PP/clay nanocomposites under electric field. The storage modulus, which is a kind of mirror of the microstructure, increases while an electric field (both AC and DC) is applied. It was found that time and the electric field strength can be superposed to yield a single mastercurve that is independent of the type and strength of the electric field. In addition, the shift factor scaled differently according to the field type. The SAXS and TEM data revealed that the AC field induces the microstructural evolution of the nanocomposites toward an exfoliated structure, while the DC field induces the alignment of silicate layers. In a DC field, the alignment process occurs as a result of dielectrophoretic motion. However, in an AC field, dielectric relaxation analysis showed that an exfoliation process arises as a result of the breakup of the charge balance.  相似文献   

19.
Poly(styrene‐co‐butadiene) rubber (SBR) and polybutadiene rubber (BR)/clay nanocomposites have been prepared. The effects of the incorporation of inorganically and organically modified clays on the vulcanization reactions of SBR and BR were analysed by rheometry and differential scanning calorimetry. A reduction in scorch time (ts1) and optimum time (t95) was observed for both the rubbers when organoclay was added and this was attributed to the amine groups of the organic modifier. However, ts1 and t95 were further increased as the clay content was increased. A reduction in torque value was obtained for the organoclay nanocomposites, indicating a lower number of crosslinks formed. The organoclays favoured the vulcanization process although the vulcanizing effect was reduced with increasing clay content. The tensile strength and elongation of SBR were improved significantly with organoclay. The improvement of the tensile properties of BR with organoclay was less noticeable than inorganic‐modified clay. Nevertheless, these mechanical properties were enhanced with addition of clay. The mechanical properties of the nanocomposites were dependent on filler size and dispersion, and also compatibility between fillers and the rubber matrix. Copyright © 2004 Society of Chemical Industry  相似文献   

20.
Poly(ethylene terephthalate) (PET)/clay nanocomposite was prepared by the direct polymerization with clay‐supported catalyst. The reaction degree of catalyst against the cation exchange capacity of clay was 8 wt %. The intercalation of PET chains into the silicate layers was revealed by X‐ray diffraction studies. SEM morphology of the nanocomposite showed a good dispersion of clay‐supported catalyst, ranging from 30 to 100 nm. The intercalated and exfoliated clay‐supported catalyst in PET matrix was also observed by TEM. The improvement of O2 permeability for PET/clay‐supported catalyst composite films over the pure PET is approximately factors of 11.3–15.6. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4875–4879, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号