首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, an attempt is made to investigate the thermal and electrical performance of a solar photovoltaic thermal (PV/T) air collector. A detailed thermal and electrical model is developed to calculate the thermal and electrical parameters of a typical PV/T air collector. The thermal and electrical parameters of a PV/T air collector include solar cell temperature, back surface temperature, outlet air temperature, open-circuit voltage, short-circuit current, maximum power point voltage, maximum power point current, etc. Some corrections are done on heat loss coefficients in order to improve the thermal model of a PV/T air collector. A better electrical model is used to increase the calculations precision of PV/T air collector electrical parameters. Unlike the conventional electrical models used in the previous literature, the electrical model presented in this paper can estimate the electrical parameters of a PV/T air collector such as open-circuit voltage, short-circuit current, maximum power point voltage, and maximum power point current. Further, an analytical expression for the overall energy efficiency of a PV/T air collector is derived in terms of thermal, electrical, design and climatic parameters. A computer simulation program is developed in order to calculate the thermal and electrical parameters of a PV/T air collector. The results of numerical simulation are in good agreement with the experimental measurements noted in the previous literature. Finally, parametric studies have been carried out. Since some corrections have been down on thermal and electrical models, it is observed that the thermal and electrical simulation results obtained in this paper is more precise than the one given by the previous literature. It is also found that the thermal efficiency, electrical efficiency and overall energy efficiency of PV/T air collector is about 17.18%, 10.01% and 45%, respectively, for a sample climatic, operating and design parameters.  相似文献   

2.
In this paper, the optimization of a solar photovoltaic thermal (PV/T) water collector which is based on exergy concept is carried out. Considering energy balance for different components of PV/T collector, we can obtain analytical expressions for thermal parameters (i.e. solar cells temperature, outlet water temperature, useful absorbed heat rate, average water temperature, thermal efficiency, etc.). Thermal analysis of PV/T collector depends on electrical analysis of it; therefore, five-parameter current–voltage (IV) model is used to obtain electrical parameters (i.e. open-circuit voltage, short-circuit current, voltage and current at the point which has maximum electrical power, electrical efficiency, etc.). In order to obtain exergy efficiency of PV/T collector we need exergy analysis as well as energy analysis. Considering exergy balance for different components of PV/T collector, we obtain the expressions which show the exergy of the different parts of PV/T collector. Some corrections have been done on the above expressions in order to obtain a modified equation for the exergy efficiency of PV/T water collector. A computer simulation program has been developed in order to obtain the amount of thermal and electrical parameters. The simulation results are in good agreement with the experimental data of previous literature. Genetic algorithm (GA) has been used to optimize the exergy efficiency of PV/T water collector. Optimum inlet water velocity and pipe diameter are 0.09 m s−1, 4.8 mm, respectively. Maximum exergy efficiency is 11.36%. Finally, some parametric studies have been done in order to find the effect of climatic parameters on exergy efficiency.  相似文献   

3.
文章设计了新型非晶硅太阳能PV/T空气集热器,该空气集热器能够解决传统太阳能PV/T热水器在高温波动情况下,晶硅电池热应力大的问题,同时避免了冬季管道发生霜冻的现象。文章通过实验对比,分析了非晶硅太阳能PV/T空气集热器、单独非晶硅光伏电池和传统太阳能空气集热器的能量效率和[火用]效率的差异。分析结果表明:非晶硅太阳能PV/T空气集热器的平均热效率为45.70%,比传统太阳能空气集热器的平均热效率降低了约25.88%;当空气质量流量增大至0.048 kg/s时,非晶硅太阳能PV/T空气集热器中的非晶硅光伏电池的平均电效率高于单独非晶硅光伏电池,它们的平均电效率分别为4.70%,4.54%;非晶硅太阳能PV/T空气集热器的总[火用]效率高于传统太阳能空气集热器的热[火用]效率和单独非晶硅光伏电池的电[火用]效率,非晶硅太阳能PV/T空气集热器总[火用]效率最大值为7.14%。文章的分析结果为非晶硅太阳能PV/T空气集热器的推广提供了参考。  相似文献   

4.
In this paper, an exergetic optimization of flat plate solar collectors is developed to determine the optimal performance and design parameters of these solar to thermal energy conversion systems. A detailed energy and exergy analysis is carried out for evaluating the thermal and optical performance, exergy flows and losses as well as exergetic efficiency for a typical flat plate solar collector under given operating conditions. In this analysis, the following geometric and operating parameters are considered as variables: the absorber plate area, dimensions of solar collector, pipes' diameter, mass flow rate, fluid inlet, outlet temperature, the overall loss coefficient, etc. A simulation program is developed for the thermal and exergetic calculations. The results of this computational program are in good agreement with the experimental measurements noted in the previous literature. Finally, the exergetic optimization has been carried out under given design and operating conditions and the optimum values of the mass flow rate, the absorber plate area and the maximum exergy efficiency have been found. Thus, more accurate results and beneficial applications of the exergy method in the design of solar collectors have been obtained.  相似文献   

5.
6.
In this communication, an attempt has been made to evaluate exergy analysis of a hybrid photovoltaic–thermal (PV/T) parallel plate air collector for cold climatic condition of India (Srinagar). The climatic data of Srinagar for the period of four years (1998–2001) has been obtained from Indian Metrological Department (IMD), Pune, India. Based on the data four climatic conditions have been defined. The performance of a hybrid PV/T parallel plate air collector has been studied for four climatic conditions and then exergy efficiencies have been carried out. It is observed that an instantaneous energy and exergy efficiency of PV/T air heater varies between 55–65 and 12–15%, respectively. These results are very close to the results predicted by Bosanac et al. [Photovoltaic/thermal solar collectors and their potential in Denmark. Final Report, EFP Project, 2003, 1713/00-0014, www.solenergi.dk/rapporter/pvtpotentialindenmark.pdf].  相似文献   

7.
In this paper, an attempt has been made to evaluate the overall performance of hybrid PV/thermal (PV/T) air collector. The different configurations of hybrid air collectors which are considered as unglazed and glazed PV/T air heaters, with and without tedlar. Analytical expressions for the temperatures of solar cells, back surface of the module, outlet air and the rate of extraction of useful thermal energy from hybrid PV/T air collectors have been derived. Further an analytical expression similar to Hottel–Whiller–Bliss (HWB) equation for flat plate collector has also been derived in terms of design and climatic parameters. Numerical computations have been carried out for composite climate of New Delhi and the results for different configurations have been compared. The thermal model for unglazed PV/T air heating system has also been validated experimentally for summer climatic conditions. It is observed that glazed hybrid PV/T without tedlar gives the best performance.  相似文献   

8.
The aim of this paper is to optimize the number of collectors for PV/T hybrid active solar still. The number of PV/T collectors connected in series has been integrated with the basin of solar still. The optimization of number of collectors for different heat capacity of water has been carried out on the basis of energy and exergy. Expressions of inner glass, outer glass and water temperature have been derived for the hybrid active solar system. For the numerical computations data of a summer day (May 22, 2008) for Delhi climatic condition have been used. It has been observed that with increase of the mass of water in the basin increases the optimum number of collector. However the daily and exergy efficiency decreases linearly and nonlinearly with increase of water mass. It has been observed that the maximum yield occurs at N = 4 for 50 kg of water mass on the basis of exergy efficiency. The thermal model has also been experimentally validated.  相似文献   

9.
In this present paper, analysis based on energy and exergy of double‐pass hybrid photovoltaic thermal (HPV/T) air collector having air flow in the opposite direction in ducts has been carried out based on initial cost, annual savings and return on investment. Choice of the location is made to cover different climatic conditions prevailing in India e.g. hot and dry climate represented by Jodhpur, warm and humid climate represented by Mumbai, moderate climate represented by Bangalore, cold and cloudy climate represented by Srinagar and composite climate represented by New Delhi. Results of single‐pass HPV/T air collector have also been compared. It is observed that electrical, thermal and exergy efficiencies of double‐pass HPV/T air collector are higher than that of single‐pass HPV/T air collector by 10–12, 40–45 and 13–17%, respectively. Further, it is observed that cost per kWh of double‐pass HPV/T air collector reduces for all the locations covered in the study when compared with cost per kWh of single‐pass HPV/T air collector. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Efficiency drop due to increase in photovoltaic (PV) module operating temperature creates a huge difference between the projected and actual electricity generated in large power plants. As a solution to this problem Photovoltaic-Thermal (PV/T) collector, with PV at top and thermal collector at the bottom has been developed. PV/T can cool the PV as well as generate low-temperature thermal energy. This article presents a comparative experimental study of two newly developed PV/T collector having transparent solar panel with copper tube absorber arranged in rectangular spiral (PV/T-RS) and horizontal oscillating (PV/T-HO) configurations. The PV/T collectors are experimentally evaluated under outdoor conditions at Indian Institute of Technology Guwahati. The developed PV/T's are compared in terms of electrical and thermal efficiencies. The PV/T-RS is found to be better as compared to PV/T-HO in terms of electrical output, whereas reverse result is reported in case of thermal output. The average electrical and thermal efficiency was found to be 11.2% ± 0.95% and 57.11% ± 2.94% for PV/T-RS. The calculated average thermal efficiency of PV/T-HO (63.6% ± 2.94%) is found to be 11.4% more as compared to PV/T-RS. The overall exergetic efficiency for PV/T-RS and PV/T-HO was found to be in the range 11.8%-16.2% ± 3.18% and 9.7%-15.25% ± 3.18%, respectively.  相似文献   

11.
In this paper, an integrated combined system of a photovoltaic (glass–glass) thermal (PV/T) solar water heater of capacity 200 l has been designed and tested in outdoor condition for composite climate of New Delhi. An analytical expression for characteristic equation for photovoltaic thermal (PV/T) flat plate collector has been derived for different condition as a function of design and climatic parameters. The testing of collector and system were carried out during February–April, 2007. It is observed that the photovoltaic thermal (PV/T) flat plate collector partially covered with PV module gives better thermal and average cell efficiency which is in accordance with the results reported by earlier researchers.  相似文献   

12.
In the present work a comparative study for thermal and electrical performance of different hybrid photovoltaic/thermal collectors designs for Iraq climate conditions have been carried out. Four different types of air based hybrid PV/T collectors have been manufactured and tested. Three collectors consist of four main parts namely, channel duct, glass cover, axial fan to circulate air and two PV panels in parallel connection. The measured parameters are, the temperature of the upper and the lower surfaces of the PV panels, air temperature along the collector, air flow rate, pressure drop, power produced by solar cell, and climate conditions such as wind speed, solar radiation and ambient temperature. The thermal and hydraulic performances of PV/T collector model IV have been analyzed theoretically based on energy balance. A Matlab computer program has been developed to solve the proposed mathematical model.The obtained results show that the combined efficiency of collector model III (double duct, single pass) is higher than that of model II (single duct double pass) and model IV (single duct single pass). Model IV has the better electrical efficiency. The pressure drop of model III is lower than that of models II and IV. The root mean square of percentage deviations for PV outlet temperature, and thermal efficiency of model IV are found to be 3.22%, and 18.04% respectively. The calculated linear coefficients of correlation (r) are 0.977, 0.965 respectively.  相似文献   

13.
In this communication, a study is carried out to evaluate an annual thermal and exergy efficiency of a hybrid photovoltaic thermal (HPVT) air collector for different Indian climate conditions, of Srinagar, Mumbai, Jodhpur, New Delhi and Banglore. The study has been based on electrical, thermal and exergy output of the HPVT air collector. Further, the life cycle analysis in terms of cost/kWh has been carried out. The main focus of the study is to see the effect of interest rate, life of the HPVT air collector, subsidy, etc. on the cost/kWh HPVT air collector. A comparison is made keeping in view the energy matrices. The study reveals that (i) annual thermal and electrical efficiency decreases with increase in solar radiation and (ii) the cost/kWh is higher in case of exergy when compared with cost/kWh on the basis of thermal energy for all climate conditions. The cost/kWh for climate conditions of Jodhpur is most economical.  相似文献   

14.
设计并搭建了CPC低倍聚光太阳能PV/T单通道空气系统实验台,对不同工作环境下聚光PV/T系统的热电性能进行了实验研究。实验研究结果显示:在聚光条件下,系统的各表面温度随光照强度的增加而升高,随下部通道入口空气流速的增加而降低。聚光PV/T系统的最大输出功率可达到60W,比对应相同电池面积平板系统最大输出功率高20W。聚光PV/T系统的各效率随光照强度增加而增大,系统的最大电效率为11%,最大热效率为70%,最大火用效率为16%,比单纯发电时最大火用效率提高约5%。实验获得了一批新的有价值的实验数据,为聚光太阳能光伏光热系统的进一步研究提供了依据。  相似文献   

15.
Hybrid conversion of solar radiation implies simultaneous solar radiation conversion into thermal and electrical energy in the PV/Thermal collector. In order to get more thermal and electrical energy, flat solar radiation reflectors have been mounted on PV/T collector. To obtain higher solar radiation intensity on PV/T collector, position of reflectors has been changed and optimal position of reflectors has been determined by both experimental measurements and numerical calculation so as to obtain maximal concentration of solar radiation intensity. The calculated values have been found to be in good agreement with the measured ones, both yielding the optimal position of the flat reflector to be the lowest (5°) in December and the highest (38°) in June. In this paper, the thermal and electrical efficiency of PV/T collector without reflectors and with reflectors in optimal position have been calculated. Using these results, the total efficiency and energy-saving efficiency of PV/T collector have been determined. Energy-saving efficiency for PV/T collector without reflectors is 60.1%, which is above the conventional solar thermal collector, whereas the energy-saving efficiency for PV/T collector with reflectors in optimal position is 46.7%, which is almost equal to the values for conventional solar thermal collector. Though the energy-saving efficiency of PV/T collector decreases slightly with the solar radiation intensity concentration factor, i.e. the thermal and electrical efficiency of PV/T collector with reflectors are lower than those of PV/T collector without reflectors, the total thermal and electrical energy generated by PV/T collector with reflectors in optimal position are significantly higher than total thermal and electrical energy generated by PV/T collector without reflectors.  相似文献   

16.
In the present investigation a theoretical analysis has been presented for the modelling of thermal and electrical processes of a hybrid PV/T air heating collector coupled with a compound parabolic concentrator (CPC). In this design, several CPC troughs are combined in a single PV/T collector panel. The absorber of the hybrid PV/T collector under investigation consists of an array of solar cells for generation of electricity, while collector fluid circulating past the absorber provides useful thermal energy as in a conventional flat plate collector. In the analysis, it is assumed that solar cell efficiency can be represented by a linear decreasing function of its temperature. Energy balance equations have been developed for the various components of the system. Based on the developed analysis, both thermal and electrical performance of the system as a function of system design parameters are presented and discussed. Results have been presented to compare the performance of hybrid PV/T collector coupled with and without CPC. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
In a photovoltaic/thermal (PV/T) collector, a portion of absorbed solar energy is transformed into electrical energy, and the remaining part is transformed into thermal energy. Increasing waste heat collection and energy conversion rates are important to improve the performance of the PV/T collector. The utilization of microencapsulated phase change slurry (MPCS) in a PV/T collector to cool photovoltaic modules is an effective way, and electrical and thermal performances of the collector are improved. To investigate influences of operating parameters on performances of PV/T collector, numerical simulation is put into effect to analyze influences of the mass fraction of MPCS on the collector performance. The influences of MPCS mass flow rate and collector channel height on collector performances are also studied. When the flow rate is 0.005 kg/s and the channel height is 0.010 m, the PV/T collector obtains the best net efficiency with a MPCS mass concentration of 20 wt%. But electrical efficiency difference between 15 and 20 wt% is not obvious. With the growth in mass fraction, PV temperature drops more and more slowly because outlet fluid has not fully melt. Take PV/T collector performances into consideration, 15 wt% MPCS is a better choice to cool photovoltaic modules.  相似文献   

18.
In this communication, an analytical expression for the water temperature of an integrated photovoltaic thermal solar (IPVTS) water heater under constant flow rate hot water withdrawal has been obtained. Analysis is based on basic energy balance for hybrid flat plate collector and storage tank, respectively, in the terms of design and climatic parameters. Further, an analysis has also been extended for hot water withdrawal at constant collection temperature. Numerical computations have been carried out for the design and climatic parameters of the system used by Huang et al. [Huang BJ, Lin TH, Hung WC, Sun FS. Performance evaluation of solar photovoltaic/thermal systems. Sol Energy 2001; 70(5): 443–8]. It is observed that the daily overall thermal efficiency of IPVTS system increases with increase constant flow rate and decrease with increase of constant collection temperature. The exergy analysis of IPVTS system has also been carried out. It is further to be noted that the overall exergy and thermal efficiency of an integrated photovoltaic thermal solar system (IPVTS) is maximum at the hot water withdrawal flow rate of 0.006 kg/s. The hourly net electrical power available from the system has also been evaluated.  相似文献   

19.
In this paper, an attempt has been made to evaluate and compare the energy matrices of a hybrid photovoltaic thermal (HPVT) water collector under constant collection temperature mode with five different types of PV modules namely c-Si, p-Si, a-Si (thin film), CdTe and CIGS. The analysis is based on overall thermal energy and exergy outputs from HPVT water collector. The temperature dependent electrical efficiency has also been calculated under composite climate of New Delhi, India.It is observed that c-Si PV module is best alternative for production of electrical power. Maximum annual overall thermal energy and exergy is obtained for c-Si PV module. The maximum and minimum EPBT of 1.01 and 0.66 years on energy basis is obtained for c-Si and CIGS respectively, whereas on exergy basis maximum EPBT of 5.72 years is obtained for a-Si and minimum of 3.44 in obtained for CIGS PV module. EPF and LCCE increase with increasing the life time of the system.  相似文献   

20.
In this paper, a thorough review of photovoltaic and photovoltaic thermal systems is done on the basis of its performance based on electrical as well as thermal output. Photovoltaic systems are classified according to their use, i.e., electricity production and thermal applications along with the electricity production. The application of various photovoltaic systems is also discussed in detail. The performance analysis including all aspects, e.g., electrical, thermal, energy, and exergy efficiency are also discussed. A case study for PV and PV/T system based on exergetic analysis is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号