首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
In this work, the electrospinning of polymer solutions was used to produce mats with hydrophobic properties from a series of commercially available biodegradable and biocompatible polymers, such as poly(3‐hydroxybutyric acid‐co‐3‐hydroxyvaleric acid), poly(DL ‐lactide), polycaprolactone, and poly(L ‐lactide). According to the results, to obtain hydrophobic properties, bead‐like morphologies were the most adequate. For obtaining this type of morphology, the polymer concentration of the electrospun solution had to be sufficiently low, although below a limit concentration it was not possible to obtain hydrophobic surfaces. The results also showed that the crystallinity of the materials may influence the final hydrophobic properties. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
L Y Qiu  K J Zhu 《Polymer International》2000,49(11):1283-1288
Poly[bis(glycine ethyl ester)phosphazene] (PGP) was blended with poly(D ,L ‐lactide) (PLA), poly(D ,L ‐lactide‐co‐glycolide) (80:20 by mole) (PLGA), poly(sebacic anhydride) (PSA) and poly(sebacic anhydride‐co‐trimellitylimidoglycine)‐block‐poly(ethylene glycol) (30:50:20 by mole) (PSTP) in various ratios using a solvent‐mixing technique. The compatibility of these blends has been evaluated by DSC, FTIR and phase contrast microscopy. The results indicated that PGP is completely incompatible with PLA, but partially compatible with PLGA and PSTP, which may be attributed to a hydrogen bonding effect. Degradation experiments have been conducted in distilled water at 37 °C and show that the blend degradation rate can be regulated by adjusting the PLGA or PSTP content of the blends. PGP/PLGA (70:30 by wt) slabs took 120 days to disappear completely, while PGP/PSTP (70:30 by wt) slabs needed only 20 days. These findings suggest that blends of PGP and PLGA or PSTP may be used as matrices for drug controlled release and for other potential biomedical applications. © 2000 Society of Chemical Industry  相似文献   

3.
In situ forming drug delivery system is prepared by phase inversion technique using poly (D ,L ‐lactic‐co‐glycolide) and leuprolide acetate dissolved in N‐methyl‐2‐pyrrolidone. The effects of ethyl heptanoate and glycerol additives are important determinant as rate modifying agents on the drug release kinetics in biodegradable in situ forming porous systems of poly(D ,L ‐lactide‐co‐glycolide) (PLGA) in N‐methyl‐2‐pyrrolidone (NMP). The release performance and porous structure morphology are investigated by scanning electron microscopy and UV–visible spectroscopy techniques to study the effect of additives. The experimental results exhibit the crucial role of ethyl heptanoate and glycerol at different loadings (1, 3, and 5% w/w) on release profile of leuprolide acetate loaded on poly(D ,L ‐lactide‐co‐glycolide)hydroxylated (PLGA‐H). Both additives at different concentrations reduce the burst effect, while increasing duration of drug release. Ethyl heptanoate, however, shows stronger effect than glycerol. The results of morphological studies show that ethyl heptanoate reduces the porosity of the polymer surface and interconnected tear‐like structures of the bulk disappear while the sponge‐like structures are observed. In this system glycerol reduces the surface porosity intensively, while the interconnected tears change into channel‐like structures. Therefore, morphological results confirm the effect of additives on leuprolide release profile. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

4.
The effect of poly(D ,L ‐lactide‐copara‐dioxanone) (PLADO) as the compatibilizer on the properties of the blend of poly(para‐dioxanone) (PPDO) and poly(D ,L ‐lactide) (PDLLA) has been investigated. The 80/20 PPDO/PDLLA blends containing from 1% to 10% of random copolymer PLADO were prepared by solution coprecipitation. The PLADO component played a very important role in determining morphology, thermal, mechanical, and hydrophilic properties of the blends. Addition of PLADO into the blends could enhance the compatibility between dispersed PDLLA phase and PPDO matrix; the boundary between the two phases became unclear and even the smallest holes were not detected. On the other hand, the position of the Tg was composition dependent; when 5% PLADO was added into blend, the Tg distance between PPDO and PDLLA was shortened. The blends with various contents of compatibilizer had better mechanical properties compared with simple PPDO/PDLLA binary polymer blend, and such characteristics further improved as adding 5% random copolymers. The maximum observed tensile strength was 29.05 MPa for the compatibilized PPDO/PDLLA blend with 5% PLADO, whereas tensile strength of the uncompatibilized PPDO/PDLLA blend was 14.03 MPa, which was the lowest tensile strength. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
Nanofibers of poly(L ‐lactide‐co‐DL ‐Lactide) (PDLLAx) copolymers with DL‐lactate (DLLA) contents of 0, 2.5, 7.5, and 50%, which exhibit strong structure/properties correlation, were fabricated by electrospinning. Effect of the copolymer structure and electrospinning conditions on morphology and properties of the fibers were examined by SEM, DSC, XRD, and tensile measurements. Bead‐free fibers of PDLLAx prepared from a DMF/CHCl3 mixed solvent are roughly 10‐times smaller in size (600–800 nm), with lower degree of surface porosity, compared to those of CHCl3. When CHCl3 is employed, an increase in size (2.4–5.5 μm) and surface porosity (0–45%) with relative humidity value is observed in crystallizable copolymers, whereas an amorphous copolymer shows a reverse trend. Thermal properties and chain arrangements of the electrospun fibers are critically affected by DLLA content of the copolymers and electrospinning conditions, as a result from interplay between intermolecular and intramolecular hydrogen bonding. Contents of crystalline domains and “physical crosslinks” generated from DL lactate segments are proposed as the origin of this phenomenon. Fiber mats of PDLLA with 50% DLLA content show a large improvement in all aspects of mechanical properties, which are suitable for various biomedical applications. POLYM. ENG. SCI., 54:472–480, 2014. © 2013 Society of Plastics Engineers  相似文献   

6.
A series of biodegradable chitosan‐graft‐polylactide (CS‐g‐PLA) copolymers were prepared by grafting of poly(L ‐lactide) (PLLA) or poly(D ‐lactide) (PDLA) precursor to the backbone of chitosan using N,N′‐carbonyldiimidazole as coupling agent. The composition of the copolymers was varied by adjusting the chain length of PLA as well as the ratio of chitosan to PLA. The copolymers synthesized via this ‘graft‐onto’ method present interesting properties as shown by NMR and infrared spectroscopy, gel permeation chromatography and solubility tests. Hydrogels were prepared by mixing water‐soluble CS‐g‐PLLA and CS‐g‐PDLA solutions. Gelation was assigned to stereocomplexation between PLLA and PDLA blocks as evidenced by differential scanning calorimetry and wide‐angle X‐ray diffraction measurements. Thymopentin (TP5) was taken as a model drug to evaluate the potential of these CS‐g‐PLA hydrogels as drug carriers. An initial burst and a final release up to 82% of TP5 were observed from high‐performance liquid chromatography analysis. Copyright © 2011 Society of Chemical Industry  相似文献   

7.
Nonwoven, biodegradable membranes fabricated by electrospinning have recently attracted a great deal of attention for biomedical applications. In this study, microporous, nonwoven membranes of poly(L ‐lactide) and its copolymers and blends were fabricated through electrospinning. The structures and morphologies of the electrospun membranes were investigated with scanning electron microscopy, differential scanning calorimetry, and X‐ray diffraction. Different polymer membranes, incorporated with carmofur, were fabricated, and their drug release profiles were investigated. Scanning electron microscopy images showed that the fiber diameters were down to the nanometer range. The diameters and morphologies of thenanofibers depended on processing parameters such as the solution properties (concentration and polymer molecular weight), applied electric voltage, solution feeding rate, and needle diameter. Differential scanning calorimetry showed that the crystallinity of the electrospun membranes was lower than that of the cast film. For all the membranes incorporated with the drug, there was a burst release in the first 10 h of incubation in phosphate‐buffered saline at 37°C. Poly(glycolide‐co‐lactide) membranes showed faster and more complete drug release than poly(L ‐lactide), and this could be attributed to its faster degradation. The incorporation of polylactide–poly(ethylene glycol) could shorten the drug release time. A combination of suitable degradable biomaterials with an appropriate electrospinning process could be useful in the fabrication of a new kind of membrane suitable for different biomedical applications such as tissue engineering and drug delivery. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
This article describes the synthesis and characterization of 2‐hydroxylethyl methacrylate‐coN‐vinylpyrrolidone copolymers, (HEMA‐co‐NVP), via free radical polymerization followed by grafting of poly(lactide) onto (HEMA‐co‐NVP) copolymers, via ring opening polymerization using tin octoate as a catalyst. The copolymers and the grafted copolymers (i.e., amphiphiles) were subjected to sustained release studies using salicylic acid, as a model drug. Characterization of the formed copolymers was performed using 1H‐NMR, 13C‐NMR, FTIR, TGA, DSC, and SEM techniques. Derivative of TGA thermogram was used to determine %hydrophilicity and %hydrophobicity in the grafted and ungrafted copolymers. The SEM morphology revealed porous layers with crispy structure that were most likely due to the presence of poly(lactide) chains. At lower content of poly(lactide) moiety, grafted copolymers showed non‐Fickian diffusion release rate, whereas Fickian diffusion release rate at higher content of poly(lactide) was observed. The increase of poly(lactide) content (i.e., larger %hydrophobicity) in the copolymer increased the drug‐sustainability, due to the consistent but porous amphiphilic degradable structures that allow controllable release of drug in time interval. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
The discovery of stereocomplexation, secondary interaction between enantiomeric poly(l ‐lactide) (PLLA) and poly(d ‐lactide) (PDLA) provides a method for the creation of novel biomaterials with distinctive chemical and physical stability. Stereocomplexation opens a new way for the preparation of diverse micro‐ and nanostructures such as uniform microspheres, hollow particles, micelles, nanocrystals, nanofibres, nanotubes and polymerosomes. Herein, we describe the design of stereocomplex assemblies for specific applications and methods for their preparation. This review focuses primarily on the use of stereocomplex assemblies in biomedical applications due to the improved stability and physicochemical properties in comparison to enantiomeric polylactides. To make the polylactide stereocomplexes soluble in water and, as a consequence, to improve compatibility with the human body, various amphiphilic copolymers with PLLA and PDLA enantiomeric segments can be prepared. Stereocomplexation can facilitate their self‐assembly into micro‐ and nanoparticles, stabilize the particle size and morphology and can also have an influence on the in vivo degradation rate and cytotoxicity of these materials. Stimuli‐responsiveness in stereocomplex assemblies can be achieved by copolymerization of lactide with, for example, thermoresponsive N‐isopropylacrylamide or amino acids with pH‐sensitive pendant groups. Stereocomplex micro‐ and nanoparticles are used for encapsulation of various bioactive compounds: anticancer drugs, antibiotics and proteins. Finally, examples of materials in which high thermal and mechanical stabilities delivered as a result of stereocomplexation play a crucial role, i.e. hydrogels, nanofibres, microcellular foams and artificial skin, are described. The preparation of biomaterials and biomedical systems based on polylactide stereocomplex assemblies opens new opportunities in this field. © 2015 Society of Chemical Industry  相似文献   

10.
The ring‐opening polymerization of L ‐ or D ‐lactide was realized in the presence of dihydroxyl or monomethoxy poly(ethylene glycol) (PEG) with a number‐average molecular weight of 2000. The resulting low‐molar‐mass poly(L ‐lactide) (PLLA)/PEG and poly(D ‐lactide) (PDLA)/PEG triblock and diblock copolymers were characterized with nuclear magnetic resonance (NMR), differential scanning calorimetry, size‐exclusion chromatography, and X‐ray diffractometric analysis. Bioresorbable hydrogels were successfully prepared from aqueous solutions containing both copolymers because of interactions and stereocomplexation between the PLLA and PDLA blocks. Gelation was evaluated with the tube inverting method and rheological measurements. A phase diagram was realized with gel–sol transitions as a function of concentration. The rheological properties of the hydrogels were investigated under various conditions through changes in the copolymer concentration, temperature, time, and frequency. It was concluded that the hydrogels constituted a dynamic and evolutive system because of the continuous formation/destruction of crosslinks and degradation. Further studies are underway to elucidate the degradation behavior and the potential of these substances as drug carriers or cell culture scaffolds. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
Linear (1‐arm) and star‐shaped (4‐, 6‐, and 16‐arm) poly(D,L ‐lactide)s (PDLLs) were synthesized by ring‐opening polymerization in bulk of D,L ‐lactide monomer. Hydroxyl end‐group compounds and stannous octoate were used as the initiator and catalyst, respectively. The intrinsic viscosity and glass transition temperature (Tg) of the PDLLs decreased steadily as the branch arm number increased for similar molecular weights. However, the intrinsic viscosity and Tg values of the linear PDLL were less than the star‐shaped PDLL for similar each PDLL arm lengths. Ibuprofen, a poorly water soluble model drug was entrapped in the PDLL microspheres. All drug‐loaded PDLL microspheres were prepared by the oil‐in‐water emulsion solvent evaporation method, were spherical in shape, and had a smooth surface with fine dispersibility. In vitro drug release behaviors indicated that the drug release from the microspheres with higher branch arm number was faster than from those with lower branch arm number. Moreover, the drug release from the star‐shaped PDLL microspheres was slower than that of the linear PDLL microspheres for similar PDLL arm lengths. The drug release behavior could be adjusted through both the branch arm number and arm length of PDLL. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
BACKGROUND: Amphiphilic block and graft copolymers constitute a very interesting class of polymers with potential for biomedical applications, due to their special characteristics, which derive from the combination of properties of hydrophilic and hydrophobic moieties. In this work, the synthesis and biodegradation of poly(2‐hydroxyethyl methacrylate)‐graft‐poly(L ‐lactide) are studied. RESULTS: The graft copolymers were synthesized using the macromonomer technique. In a first step, methacryloyl‐terminated poly(L ‐lactide) macromonomers were synthesized in a wide molecular weight range using different catalysts. Subsequently, these macromonomers were copolymerized with 2‐hydroxyethyl methacrylate in order to obtain a graft copolymer. These new materials resemble hydrogel scaffolds with a biodegradable component. The biodegradation was studied in hydrolytic and enzymatic environments. The influence of different parameters (molecular weight, crystallinity, ratio between hydrophilic and hydrophobic components) on the degradation rate was investigated. CONCLUSION: Based on this study it will be possible to tailor the release properties of biodegradable materials. In addition, the materials will show good biocompatibility due to the hydrophilic poly(2‐hydroxyethyl methacrylate) hydrogel scaffold. This kind of material has potential for many applications, like controlled drug‐delivery systems or biodegradable implants. Copyright © 2008 Society of Chemical Industry  相似文献   

13.
Two enantiomeric triblock ABA copolymers composed of poly(L ‐lactide)–poly(ethylene glycol)–poly(L ‐lactide) (PLLA–PEG–PLLA) and poly(D ‐lactide)–poly(ethylene glycol)–poly(D ‐lactide) (PDLA–PEG–PDLA) were synthesized with two different middle‐block PEG chain lengths by ring‐opening polymerization of L ‐lactide and D ‐lactide in the presence of PEG, respectively. A pair of enantiomeric triblock copolymers were combined to form a stereocomplex by a solvent‐casting method. The triblock copolymers and their stereocomplexes were characterized by 1H‐ and 13C‐NMR spectroscopy and gel permeation chromatography. Their crystalline structures and crystalline melting behaviors were analyzed by the wide‐angle X‐ray diffraction method and differential scanning calorimetry. The stereocomplex formed between a pair of enantiomeric triblock copolymers exhibited a higher crystalline melting temperature with a distinctive 3/1 helical crystalline structure. PLLA–PEG–PLLA and its stereocomplex with PDLA–PEG–PDLA were used to fabricate a series of microspheres encapsulating a model protein drug, bovine serum albumin (BSA). They were prepared by a double‐emulsion solvent‐evaporation method. The morphological aspects of the microspheres were characterized and BSA release profiles from them were investigated. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1615–1623, 2000  相似文献   

14.
We investigated the molecular orientation and surface morphology of organized molecular films with regard to solid‐state structures for organo‐modified montmorillonites by surface pressure‐area (π ? A) isotherm, in‐plane and out‐of plane X‐ray diffraction (XRD), and atomic force microscopy (AFM). From the results of out‐of plane XRD, formation of highly ordered layer structure was confirmed in these clay Langmuir‐Blodgett (LB) film. Further, two‐dimensional lattice of long alkyl chain of organo‐modified parts packed hexagonally or orthorhombically in the films. Surface morphology of Z‐type monolayers on solid of organo‐modified montmorillonites indicates heterogeneous modification ratio in montmorillonite surface by AFM observation. In addition, monolayer behavior on the water surface and mesoscopic morphological formation on solid of mixed films of organo‐modified montmorillonite and poly‐(L ‐lactide) (PLLA) were investigated by π ? A isotherm and AFM. Collapsed surface pressures are independent on the mixed ratio, and indicate almost constant value in their isotherms. This tendency is a peculiarity of immiscible system. From the result of AFM observation, phase separated structure was confirmed in mesoscopic scales. This phase separated morphology remarkably varied with mixed ratio. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

15.
We propose here, a novel technique to synthesize high molecular weight (MW) poly (L ‐lactic acid)‐clay nanocomposite (PLACN), via solid state polymerization (SSP). We synthesize prepolymer of PLACN (pre‐PLACN) from both, L ‐lactic acid and L ‐lactide, as starting materials. Synthesis of pre‐PLACN from L ‐lactic acid is carried out via in situ melt polycondensation (MP) of L ‐lactic acid oligomer, followed by SSP, to achieve high MW PLACN (Mw ∼ 138,000 Da). In case of L ‐lactide as the starting material, we prepare L ‐lactide–clay intercalated mixture which yields moderate MW pre‐PLACN during subsequent ring opening polymerization (ROP). Interestingly, ROP is performed by using hydroxyl functionalized ternary catalyst system (L ‐lactide–Sn(II) octoate–oligo (L‐lactic acid) complex), which provides the terminal hydroxyl end‐groups, required for step‐growth SSP. Pre‐PLACN MW is now increased to Mw ∼ 127,000 Da, by the subsequent SSP process. 1H NMR analyses confirm that these end‐groups, are indeed consumed during SSP. During SSP, the PLACN also achieves up to 90% crystallinity, which may be due to the synchronization of the slow step‐growth SSP of poly(L ‐lactic acid) (PLA) with the crystallization kinetics. Optical purity of PLACNs is similar to that of neat PLA, whereas the thermal stability of PLACNs is significantly superior. As evidenced by wide‐angle X‐ray scattering/small‐angle X‐ray scattering analyses and in line with the literature, both, intercalated and exfoliated PLACN morphologies, have been synthesized, by suitable selection of clays. We also verify the correlation between the PLA semicrystalline morphology and the PLACN morphology, which is consistent with those of PLACN synthesized by other techniques. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

16.
BACKGROUND: Biodegradable block copolymers have attracted particular attention in both fundamental and applied research because of their unique chain architecture, biodegradability and biocompatibility. Hence, biodegradable poly[((R )‐3 ‐hydroxybutyrate)‐block‐(D ,L ‐lactide)‐block‐(ε‐caprolactone)] (PHB‐PLA‐PCL) triblock copolymers were synthesized, characterized and evaluated for their biocompatibility. RESULTS: The results from nuclear magnetic resonance spectroscopy, gel permeation chromatography and thermogravimetric analysis showed that the novel triblock copolymers were successfully synthesized. Differential scanning calorimetry and wide‐angle X‐ray diffraction showed that the crystallinity of PHB in the copolymers decreased compared with methyl‐PHB (LMPHB) oligomer precursor. Blood compatibility experiments showed that the blood coagulation time became longer accompanied by a reduced number of platelets adhering to films of the copolymers with decreasing PHB content in the triblocks. Murine osteoblast MC3T3‐E1 cells cultured on the triblock copolymer films spread and proliferated significantly better compared with their growth on homopolymers of PHB, PLA and PCL, respectively. CONCLUSION: For the first time, PHB‐PLA‐PCL triblock copolymers were synthesized using low molecular weight LMPHB oligomer as the macroinitiator through ring‐opening polymerization with D ,L ‐lactide and ε‐caprolactone. The triblock copolymers exhibited flexible properties with good biocompatibility; they could be developed into promising biomedical materials for in vivo applications. Copyright © 2008 Society of Chemical Industry  相似文献   

17.
The poly(2‐methacryloyloxyethyl phosphorylcholine)‐block‐poly(D ,L ‐lactide) (PMPC‐b‐PLA) was specially designed to develop biomimetic giant vesicles (GVs) and giant large compound vesicles via a simple spontaneous assemble in aqueous solution. The weight fraction of the hydrophilic PMPC block (fPC) was proved to play an important role in the size and morphology control of the self‐assembled aggregates. The GVs with controlled micrometer size and biomimetic PMPC corona have great potential as artificial cell models. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
Mixtures of different bioerosionable polyesters were used to prepare microparticulated tamoxifen delivery systems to achieve anticancer effects in breast malignant cancer cells. Tamoxifen (TMX) was included into microspheres (MS) formulated via spray‐drying. Mixtures of poly(D ,L ‐lactide‐co‐glycolide) (PLGA) of different lactide/glycolide proportions (50 : 50 and 75 : 25) and poly(D ,L ‐lactic acid) (PLA) were used. The average diameter of the resultant TMX‐loaded microparticles was in the range 1.04 ± 0.51–1.55 ± 0.95 μm. The encapsulation efficiency of TMX was between 97.8% [48.9 ± 0.1 TMX (μg)/MS (mg)] and 69.6% [36.6 ± 0.1 TMX (μg)/MS (mg)] depending on the polymeric composition of the formulation. Drug burst effect was not observed. TMX was released from the polymeric matrices in a sustained release manner between 11 and 58 days depending on polymeric composition of microspheres. TMX‐loaded microspheres showed high efficacy in causing cell death in MCF7 breast malignant cancer cells. Thus, these TMX‐loaded PLGA‐based microspheres hold potential to treat breast malignant cancer cells. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
A polystyrene (PS)‐b‐polylactide (PLA) block copolymer was prepared from the combination of atom transfer radical polymerization and ring‐opening polymerization with commercially available 2,2,2‐tribromoethanol as a dual initiator in a sequential two‐step procedure. Hydroxyl‐terminated polystyrene (PS‐OH)s with various molecular weights were first prepared with polydispersity indices lower than 1.3; these provided valuable macroinitiators for the polymerization of D,L ‐lactide. A block copolymer with a composition allowing the formation of hexagonally packed PLA cylinders in a PS matrix was then obtained. The PS‐b‐PLA thin films revealed, after vapor solvent annealing, a hexagonally packed organization of the PLA cylinders, which was oriented perpendicularly to the surface of the film. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
Biofouling that involves protein adsorption, cell and bacteria adhesion, and biofilm formation between a surface and biological entities is a great challenge for biomedical and industry applications. In this work, L ‐tyrosine‐derived polyurethanes (L ‐polyurethane) with different molecular weights of poly(ethylene glycol) (PEG) were synthesized, characterized and coated on gold surfaces using spin‐coating. The non‐fouling activity of different L ‐polyurethane films was evaluated by protein adsorption and cell adhesion. Surface plasmon resonance and cell assay results demonstrate that the PEG content in these L ‐polyurethanes contributes excellent resistance to protein adsorption and cell attachments. This work provides alternative and effective biomaterials for potential applications in blood‐contacting devices. Copyright © 2011 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号