首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new biphenol, 3‐pentadecyl 4,4′‐biphenol, was synthesized starting from 3‐pentadecylphenol and was polycondensed with 4,4′‐difluorobenzophenone, 1,3‐bis(4‐fluorobenzoyl)benzene and bis(4‐fluorophenyl)sulfone to obtain poly(arylene ether)s with biphenylene linkages in the backbone and pendent pentadecyl chains. Inherent viscosities and number‐average molecular weights (Mn) of the poly(arylene ether)s were in the range 0.50 ? 0.81 dL g?1 and 2.2 × 104 ? 8.3 × 104, respectively. Detailed NMR spectroscopic studies of the poly(arylene ether)s indicated the presence of constitutional isomerism which existed because of the non‐symmetrical structure of 3‐pentadecyl 4,4′‐biphenol. The poly(arylene ether)s readily dissolved in common organic solvents such as dichloromethane, chloroform and tetrahydrofuran and could be cast into tough, transparent and flexible films from their chloroform solutions. The poly(arylene ether)s exhibited Tg values in the range 35–60 °C which are lower than that of reference poly(arylene ether)s without pentadecyl chains. The 10% decomposition temperatures (T10) of the poly(arylene ether)s were in the range 410–455 °C indicating their good thermal stability. A gas permeation study of poly(ether sulfone) containing pendent pentadecyl chains revealed a moderate increase in permeability for helium, hydrogen and oxygen. However, there was a large increase in permeability for carbon dioxide which could be attributed to the internal plasticization effect of pendent pentadecyl chains. © 2016 Society of Chemical Industry  相似文献   

2.
Poly(aryl ether ketone)s (PAEKs) are a class of high‐performance engineering thermoplastics known for their excellent combination of chemical, physical and mechanical properties, and the synthesis of semicrystalline PAEKs with increased glass transition temperatures (Tg) is of much interest. In the work reported, a series of novel copolymers of poly(ether ketone ketone) (PEKK) and poly(ether amide ether amide ether ketone ketone) were synthesized by electrophilic solution polycondensation of terephthaloyl chloride with a mixture of diphenyl ether and N,N′‐bis(4‐phenoxybenzoyl)‐4,4′‐diaminodiphenyl ether (BPBDAE) under mild conditions. The copolymers obtained were characterized using various physicochemical techniques. The copolymers with 10–35 mol% BPBDAE are semicrystalline and have markedly increased Tg over commercially available poly(ether ether ketone) and PEKK due to the incorporation of amide linkages in the main chain. The copolymers with 30–35 mol% BPBDAE not only have high Tg of 178–186 °C, but also moderate melting temperatures of 335–339 °C, having good potential for melt processing. The copolymers with 30–35 mol% BPBDAE have tensile strengths of 102.4–103.8 MPa, Young's moduli of 2.33–2.45 GPa and elongations at break of 11.7–13.2%, and exhibit high thermal stability and good resistance to organic solvents. Copyright © 2010 Society of Chemical Industry  相似文献   

3.
A novel monomer, bis[4‐(4‐fluorobenzoyl)phenyl]phenylphosphine oxide, was synthesized through the reaction of bis(4‐chloroformylphenyl) phenyl phosphine oxide with fluorobenzene. Three poly(ether ether ketone ketone)s derived from bis[4‐(4‐fluorobenzoyl)phenyl]phenylphosphine oxide and different aromatic bisphenols were prepared by aromatic nucleophilic substitution reactions. The resulting polymers had inherent viscosities in the range of 0.55–0.73 dL/g. The structures of the poly(ether ether ketone ketone)s were characterized with Fourier transform infrared and 1H‐NMR. Thermal analysis indicated that the glass‐transition temperatures of the poly(ether ether ketone ketone)s were higher than 200°C, and the 5% weight loss temperatures in nitrogen were higher than 463°C. All the polymers showed excellent solubility in polar solvents such as N‐methyl‐2‐pyrrolidone, dimethylformamide, and dimethylacetamide and could also be dissolved in chlorinated methane. The polymers afforded transparent and flexible films by solvent casting. Organic phosphorous moieties also imparted good flame‐retardancy to the polymers. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
A new monomer, N,N′‐bis(4‐phenoxybenzoyl)‐m‐phenylenediamine (BPPD), was prepared by condensation of m‐phenylenediamine with 4‐phenoxybenzoyl chloride in N,N‐dimethylacetamide (DMAc). A series of novel poly(ether amide ether ketone) (PEAEK)/poly(ether ketone ketone) (PEKK) copolymers were synthesized by the electrophilic Friedel‐Crafts solution copolycondensation of terephthaloyl chloride (TPC) with a mixture of diphenyl ether (DPE) and BPPD, over a wide range of DPE/BPPD molar ratios, in the presence of anhydrous AlCl3 and N‐methylpyrrolidone (NMP) in 1,2‐dichloroethane (DCE). The influence of reaction conditions on the preparation of copolymers was examined. The copolymers obtained were characterized by different physicochemical techniques. The copolymers with 10–25 mol % BPPD were semicrystalline and had remarkably increased Tgs over commercially available PEEK and PEKK due to the incorporation of amide linkages in the main chains. The copolymers III and IV with 20–25 mol % BPPD had not only high Tgs of 184–188°C, but also moderate Tms of 323–344°C, having good potential for the melt processing. The copolymers III and IV had tensile strengths of 103.7–105.3 MPa, Young's moduli of 3.04–3.11 GPa, and elongations at break of 8–9% and exhibited outstanding thermal stability and good resistance to organic solvents. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
2,6‐Diphenoxybenzonitrile (DPOBN) was synthesized by reaction of phenol with 2,6‐difluorobenzonitrile in N‐methyl‐2‐pyrrolidone in the presence of KOH and K2CO3. Poly(aryl ether ketone ketone)/poly(aryl ether ether ketone ketone) copolymers with pendant cyano groups were prepared by the Friedel–Crafts electrophilic substitution reaction of terephthaloyl chloride with varying mole proportions of diphenyl ether and DPOBN using 1,2‐dichloroethane as solvent and N‐methyl‐2‐pyrrolidone as Lewis base in the presence of anhydrous AlCl3. The resulting polymers were characterized by various analytical techniques, such as FT‐IR, differential scanning calorimeter, thermal gravimetric analysis, and wide‐angle X‐ray diffraction. The crystallinity and melting temperature of the polymers were found to decrease with increase in concentration of the DPOBN units in the polymer. Thermogravimetric studies showed that all the polymers were stable up to 514°C in N2 atmosphere. The glass transition temperature was found to increase with increase in concentration of the DPOBN units in the polymer when the molar ratios of DPOBN to DPE ranged from 10/90 to 30/70. The copolymers containing 30–40 mol % of the DPOBN units exhibit excellent thermostability at (350 ± 10)°C and have good resistance to acidity, alkali, and organic solvents. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3601–3606, 2007  相似文献   

6.
2,6‐Bis(β‐naphthoxy)benzonitrile (BNOBN) was synthesized by reaction of β‐naphthol with 2,6‐difluorobenzonitrile in N‐methyl‐2‐pyrrolidone (NMP) in the presence of KOH and K2CO3. Poly(ether ketone ether ketone ketone)(PEKEKK) /poly(ether ether ketone ketone) (PEEKK) copolymers containing naphthalene and pendant cyano groups were obtained by electrophilic Friedel‐Crafts polycondensation of terephthaloyl chloride (TPC) with varying mole proportions of 4,4′‐diphenoxybenzophenone (DPOBP) and 2,6‐bis(β‐naphthoxy)benzonitrile (BNOBN) using 1,2‐dichloroethane (DCE) as solvent and NMP as Lewis base in the presence of anhydrous AlCl3. The resulting polymers were characterized by various analytical techniques, such as FTIR, DSC, TG, and WAXD. The results indicated that the crystallinity and melting temperature of the polymers decreased with increase in concentration of the BNOBN units in the polymer, the glass transition temperature of the polymers increased with increase in concentration of the BNOBN units in the polymer. Thermogravimetric studies showed that all the polymers were stable up to 536°C in N2 atmosphere. The copolymers have good resistance to acidity, alkali, and organic solvents. Because of the melting temperature (Tm) depression with increase in the BNOBN content in the reaction system, the processability of the resultant coplymers could be effectively improved. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
A series of poly(aryl ether ketone)s (PAEK) copolymers containing phthalazinone moieties were synthesized by modest polycondensation reaction from 4‐(4‐hydroxyl‐phenyl)‐(2H)‐phthalazin‐1‐one (DHPZ), hydroquinone (HQ), and 1,4‐bis(4‐fluorobenzoyl)benzene (BFBB). The Tg values of these copolymers ranged from 168 to 235°C, and the crystalline melting temperatures varied from 285 to 352°C. By introducing phthalazinone moieties into the main chain, the solubility of these copolymers was improved in some common polar organic solvents, such as chloroform (CHCl3), N‐methyl‐2‐pyrrolidinone (NMP), nitrobenzene (NB) and so on. The values of 5% weight loss temperatures were all higher than 510°C in nitrogen. The crystal structures of these copolymers were determined by wide‐angle X‐ray diffraction (WAXD), which revealed that they were semicrystalline in nature, and the crystal structure of these copolymers was orthorhombic, equal to poly(ether ether ketone ketone)s. As phthalazinone content in the backbone varied from 0 to 40 mol % (mole percent), the cell parameters of these copolymers including the a, b, and c axes lengths ranged from 7.76 to 7.99 Å, 6.00 to 6.14 Å, and 10.10 to 10.19 Å, respectively. The degree of crystallinity (via differential scanning calorimetry) decreased from 37.70% to 16.14% simultaneously. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1744–1753, 2007  相似文献   

8.
New poly(phthalazinone ether ketone)s (PPEKs) with pendent terminal ethynyl groups were synthesized by the aromatic nucleophilic substitution (SNAr) polycondensation reaction of a new bisphenol monomer, 2‐(3‐ethynylphenyl)hydroquinone, with 4‐(4′‐hydroxyphenyl)phthalazin‐1(2H)‐one and 4,4′‐bis(4‐fluorophenyl) ketone, followed by click modification reaction with 1‐azidopyrene. Fourier transform infrared and NMR spectral data of the model compound indicated that the terminal ethynyl groups were stable in SNAr reaction conditions, thus allowing the synthesis of the desired polymers. The PPEKs obtained with glass transition temperature (Tg) in the range 152–245 °C were amorphous, characterized by wide‐angle X‐ray diffraction, and dissolved in organic solvent to cast into transparent and flexible films. Differential scanning calorimetry results indicated that the curing reaction of the terminal ethynyl groups of the copolymers took place upon heating to 250 °C. The Tg of cured PPEKs was increased to about 260 °C. They also exhibited excellent thermal stability with 5% weight loss temperatures ranging from 448 to 527 °C in various atmospheres. The PPEKs with pendent terminal ethynyl groups were subsequently functionalized with pyrene through click reaction. A dilute chloroform solution displayed a red‐shifted emission profile. © 2014 Society of Chemical Industry  相似文献   

9.
Several novel aromatic poly(ether ketone)s containing pendant methyl groups and sulfone linkages with inherent viscosities of 0.62–0.65 dL/g were prepared from 2‐methyldiphenylether and 3‐methyldiphenylether with 4,4′‐bis(4‐chloroformylphenoxy)diphenylsulfone and 4,4′‐bis (3‐chloroformylphenoxy)diphenylsulfone by electrophilic Friedel–Crafts acylation in the presence of N,N‐dimethylformamide with anhydrous AlCl3 as a catalyst in 1,2‐dichloroethane. These polymers, having weight‐average molecular weights in the range of 57,000–71,000, were all amorphous and showed high glass‐transition temperatures ranging from 160.5 to 167°C, excellent thermal stability at temperatures over 450°C in air or nitrogen, high char yields of 52–57% in nitrogen, and good solubility in CHCl3 and polar solvents such as N,N‐dimethylformamide, dimethyl sulfoxide, and N‐methyl‐2‐pyrrolidone at room temperature. All the polymers formed transparent, strong, and flexible films, with tensile strengths of 84.6–90.4 MPa, Young's moduli of 2.33–2.71 GPa, and elongations at break of 26.1–27.4%. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
BACKGROUND: The introduction of poly(ether ether ketone)‐based carbon‐fiber composites accelerated the application of poly(ether ether ketone)s in advanced composite materials. In order to improve the compatibility and processability with reinforced components, polymers with low melt viscosity are preferable. RESULTS: Novel fully aromatic macrocycle‐terminated poly(aryl ether ketone)s (MCPAEKs) were prepared by condensation of macrocyclic aryl ether ketone dimers containing hydroxyphenyl groups and fluorine end‐capped poly(aryl ether ketone) oligomers. Compared with liner poly(aryl ether ketone)s, MCPAEKs showed much lower melt viscosities at low temperature. In the presence of caesium fluoride, the crosslinking reaction of MCPAEKs afforded fully aromatic thermoset poly(aryl ether ketone)s by ring‐opening reaction. CONCLUSION: The MCPAEKs exhibited high thermal stability due to their wholly aromatic structures. After crosslinking, the glass transition temperatures and complex melt viscosities of the polymers were increased greatly. Although there was some residual cesium fluoride or phenoxides produced by ring‐opening reaction, the thermoset poly(aryl ether ketone)s obtained had good thermal stability with temperatures at 5% weight loss above 475 °C. Copyright © 2009 Society of Chemical Industry  相似文献   

11.
The synthesis of a novel chloro monomer containing the 1,2‐dibenzoylbenzene moiety was described. The chloro monomer was reacted with 4‐(4‐hydroxyphenyl)‐1(2H)‐phthalazinone compound in the presence of excess anhydrous potassium carbonate in an aprotic solvent (Sulfolane), and high molecular weight amorphous poly(aryl ether ketone ketone) was synthesized. The polymers with high glass transition temperature were soluble in solvents such as chloroform and nitrobenzene at room temperature and easily cast into flexible, colorless, and transparent films. The 5% weight loss of the polymers was >400 °C. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1487–1492, 2001  相似文献   

12.
9,9‐Bis(4‐hydroxyphenyl)xanthene (BHPX), a bisphenol monomer, was synthesized in 82% yield from xanthenone in a one‐pot, two‐step synthetic procedure. Four novel aromatic poly(ether ketone)s (PEKs) based on BHPX were prepared via a nucleophilic aromatic substitution polycondensation with four difluorinated aromatic ketones. The polycondensation proceeded in tetramethylene sulfone in the presence of anhydrous potassium carbonate and afforded the new cardo PEKs in nearly quantitative yields with inherent viscosities of 0.77–0.85 dL/g. High molecular weight PEKs having number‐average molecular weights (Mn's) in the range of 38,900–40,600 g/mol with the polydispersity index ranged from 1.97 to 2.06 are all amorphous and show high glass transition temperatures ranging from 210°C to 254°C, excellent thermal stability, and the temperatures at the 5% weight loss are over 538°C with char yields above 60% at 700°C in nitrogen. These new PEKs are all soluble in polar aprotic solvents such as N‐methyl‐2‐pyrrolidone and N, N′‐dimethylacetamide and could also be dissolved in chloroform and tetrahydrofuran. All the polymers formed transparent, strong, and flexible films with tensile strengths of 78–84 MPa, Young's moduli of 2.54–3.10 GPa, and elongations at break of 14–18 %. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
4,4′‐Bis(4‐phenoxybenzoyl)diphenyl was prepared by the Friedel–Crafts reaction of 4‐bromobenzoyl chloride and diphenyl followed by condensation with potassium phenoxide. Novel aromatic poly(ether ketone diphenyl ketone ether ketone ketone)s were obtained by the electrophilic Friedel–Crafts solution copolycondensation of 4,4′‐bis(4‐phenoxybenzoyl)diphenyl with a mixture of isophthaloyl chloride and terephthaloyl chloride over a wide range of isophthaloyl chloride/terephthaloyl chloride molar ratios in the presence of anhydrous aluminum chloride and N‐methylpyrrolidone in 1,2‐dichloroethane. The influence of the reaction conditions on the preparation of the copolymers was examined. The copolymers were characterized with different physicochemical techniques. Because of the incorporation of diphenyl, the resulting copolymers exhibited outstanding thermal stability. The glass‐transition temperatures were above 174°C, the melting temperatures were above 342°C, and the 5% weight loss temperatures were above 544°C in nitrogen. All these copolymers were semicrystalline and insoluble in organic solvents. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
The synthesis of novel poly(ether ether ketone ketone)s containing a lateral group via the random copolymerization of 4,4′‐biphenol, tert‐butylhydroquinone and 1,4‐bis(p‐fluorobenzoyl)benzene is described. The copolymers were characterized by differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD) and polarized optical microscopy (POM) observation. The results showed that the thermotropic liquid‐crystalline properties were achieved in the copolymers containing 30 mol% and 50 mol% tert‐butylhydroquinone, which have relatively lower melting temperatures due to the copolymerization effect. Both the crystalline–liquid‐crystalline transition (Tm) and the liquid‐crystalline–isotropic phase transition (Ti) were observable in the DSC thermograms, while the biphenol‐based poly(aryl ether ketone) has only one melting transition. The hydroquinone‐based polymer was shown to be amorphous. Thermogravimetric analysis (TGA) results showed that these copolymers are all high‐temperature resistant with higher glass transition temperature between 147 and 149 °C, and higher decomposition temperature Td in the range 480–520 °C. © 2000 Society of Chemical Industry  相似文献   

15.
New monomers, 4,4′‐bis(4‐phenoxybenzoyl)diphenyl (BPOBDP) and N,N′‐bis(4‐phenoxybenzoyl)?4,4′‐diaminodiphenyl ether (BPBDAE), were conveniently synthesized via simple synthetic procedures from readily available materials. Novel copolymers of poly(ether ketone diphenyl ketone ether ketone ketone) (PEKDKEKK) and poly(ether amide ether amide ether ketone ketone) (PEAEAEKK) were synthesized by electrophilic Friedel‐Crafts solution copolycondensation of isophthaloyl chloride (IPC) with a mixture of BPOBDP and BPBDAE, over a wide range of BPOBDP/BPBDAE molar ratios, in the presence of anhydrous AlCl3 and N‐methylpyrrolidone (NMP) in 1,2‐dichloroethane (DCE). The copolymers obtained were characterized by different physico‐chemical techniques. The copolymers with 10–40 mol% BPBDAE are semicrystalline and had remarkably increased Tgs over commercially available PEEK and PEKK due to the incorporation of amide and diphenyl linkages in the main chains. The copolymers IV and V with 30–40 mol% BPBDAE had not only high Tgs of 185–188°C, but also moderate Tms of 326–330°C, having good potential for the melt processing. The copolymers IV and V had tensile strengths of 101.7–102.3 MPa, Young's moduli of 2.19–2.42 GPa, and elongations at break of 13.2–16.6% and exhibited high thermal stability and excellent resistance to organic solvents. POLYM. ENG. SCI., 54:1757–1764, 2014. © 2013 Society of Plastics Engineers  相似文献   

16.
BACKGROUND: Poly(ether amide)s have been well studied in terms of improving the physical and thermal properties of aromatic polyamides. Poly(ether amide)s of high enough molecular weight to be useful for industrial purposes are generally difficult to prepare. The objective of this project was to introduce a simple and commercially feasible process to prepare poly(ether amide)s by a polymerization reaction at relatively low temperature. RESULTS: A series of poly(ether amide)s were prepared by direct polyamidation of p‐xylylene glycol with bis(ether nitrile)s via the Ritter reaction using concentrated H2SO4 in acetic acid. The synthesized poly(ether amide)s showed good solubility in polar aprotic solvents. The resultant poly(ether amide)s had inherent viscosities in the range 0.36–1.03 dL g?1. The glass transition temperatures of the poly(ether amide)s were determined using differential scanning calorimetry to be in the range 190–258 °C. Thermogravimetric analysis data for these polymers indicated the 10% weight loss temperatures to be in the range 290–390 °C in nitrogen atmosphere. CONCLUSION: The Ritter reaction was applied for the synthesis of a variety of poly(ether amide)s with moderate to high molecular weights. This procedure provides a simple polymerization process for the convenient preparation of poly(ether amide)s in high yield at room temperature. Copyright © 2009 Society of Chemical Industry  相似文献   

17.
4,4′‐bis(Phenoxy)diphenyl sulfone (DPODPS) was synthesized by reaction of phenol with bis(4‐chlorophenyl) sulfone in tetramethylene sulfone in the presence of NaOH. Two poly(aryl ether sulfone ether ketone ketone)s (PESKKs) with high molecular weight were prepared by low temperature solution polycondensation of DPODPS and terephthaloyl chloride (TPC) or isophthaloyl chloride (IPC), respectively, in 1,2‐dichloroethane and in the presence of aluminum chloride (AlCl3) and N‐methylpyrrolidone (NMP). The resulting polymers were characterized by various analytical techniques, such as FT‐IR, 1H‐NMR, DSC, TG, and WAXD. The results show that the Tg and Td of PESEKKs are much higher, but its Tm is lower than those of PEKK. The other results indicate that PESEKKs exhibit excellent thermostabilities at 300 ± 10°C. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 489–493, 2005  相似文献   

18.
In order to obtain poly(ether ether ketone)s having enhanced solubility and processability without extreme loss of other properties, a series of copoly(ether ether ketone)s (Co‐PEEKs) with pendant phenyl groups were synthesized from 1,1‐bi(4‐hydroxyphenyl)‐1‐phenylethane (ph‐BPA), hydroquinone and 4,4′‐difluorobenzophenone via aromatic nucleophilic substitution reaction. The structures and properties of the Co‐PEEKs were characterized using Fourier transform infrared and 1H NMR spectroscopies, differential scanning calorimetry, thermogravimetric analysis, wide‐angle X‐ray diffraction and solubility testing. These Co‐PEEKs have inherent viscosities in the range 0.14–1.09 dL g?1, and their number‐average and weight‐average molecular weights reach 72 659 and 163 400 g mol?1, respectively. The Co‐PEEK with the lowest content of ph‐BPA has a semi‐crystalline nature and is only soluble in 98% sulfuric acid. However, with an increase of ph‐BPA in the Co‐PEEKs, they become amorphous and readily soluble in a wide range of organic solvents and can afford tough films. These Co‐PEEKs have glass transition temperatures of 137–180 °C depending on the content of ph‐BPA. All the Co‐PEEKs have initial degradation temperatures above 480 °C in nitrogen atmosphere. Thus, these Co‐PEEKs with excellent thermal stability, good solubility and processability have potential for use in high‐performance films, coatings, hollow fiber membranes, etc. Copyright © 2011 Society of Chemical Industry  相似文献   

19.
Five new poly(arylene ether)s containing phthalimidine group in the main chain and pendent trifluoromethyl group have been prepared by the reaction of 4,4′‐(bis‐4‐fluoro‐3‐trifluoromethylphenyl)benzene (BTF) with bisphenols. Different molar ratios of N‐phenyl‐3,3‐bis(4‐hydroxyphenyl)phthalimidine (PA) and 4,4′‐isopropylidenediphenol (BPA) have been used to generate different copolymers. The polymers obtained by step growth polymerization exhibited weight‐average molecular weight upto 134,000 g/mol with a polydispersity index of 2.1–2.4. The homopolymer from BTF and PA showed very high glass transition temperature of 258°C and outstanding thermal stability upto 536°C for 5% weight loss under nitrogen. The polymers were soluble in a wide range of organic solvents. Transparent thin films of these polymers exhibited tensile strengths upto 65 MPa and elongation at break upto 45% depending on the exact repeat unit structures. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
A novel monomer of tetrachloroterephthaloyl chloride (TCTPC) was prepared by the chlorination of terephthaloyl chloride catalyzed by ferric chloride at 175–180°C for 10 h and confirmed by FTIR, MS, and elemental analysis. Five new polychloro substituted poly(aryl ether ketone sulfone)s (PEKSs) with inherent viscosities of 0.68–0.75 dL/g have been prepared from 4,4′‐diphenoxydiphenylsulfone, 4,4′‐bis(2‐methylphenoxy) diphenylsulfone, 4,4′‐bis(3‐methylph‐enoxy)diphenylsulfone, 4,4′‐bis(2,6‐dimethylphenoxy)diphenylsulfone, and 4,4′‐bis(1‐naphthoxy)‐diphenylsulfone with TCTPC by electrophilic Friedel‐Crafts acylation in the presence of DMF with anhydrous AlCl3 as a catalyst in 1,2‐dichloroethane, respectively. These polymers having weight–average molecular weight in the range of 76,600–83,900 are all amorphous and show high glass transition temperatures ranging from 213 to 250°C, the 5% weight loss temperature over 450°C, high char yields of 60–67% at 700°C in nitrogen and good solubility in CHCl3 and polar solvents such as DMF, DMSO, and NMP at room temperature. All the polymers formed transparent, strong, and flexible films, with tensile strengths of 85.1–90.8 MPa, Young's moduli of 2.52–3.24 GPa, and elongations at break of 21.2–27.2%. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号