首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the morphologies of three types of acrylonitrile–butadiene rubber (NBR)/polypropylene (PP) thermoplastic vulcanizates (TPVs) (with an NBR/PP blend ratio of 70/30) were compared. The TPVs were (1) an ultrafine fully vulcanized acrylonitrile–butadiene rubber (UFNBR)/PP TPV made by the mechanical blending of UFNBR with PP, (2) a dynamically vulcanized NBR/PP TPV without the compatibilization of maleic anhydride grafted polypropylene (MP) and amine‐terminated butadiene–acrylonitrile copolymer (ATBN), and (3) a dynamically vulcanized NBR/PP TPVs with the compatibilization of MP and ATBN. The influence of the compatibility therein on the size of the dispersed vulcanized NBR particles and the crystallization behavior of the PP in the TPVs and the resultant properties are also discussed. As indicated by Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry, polarizing microscopy, dynamic mechanical thermal analysis, and rheological and mechanical testing, the compatibility was significantly improved by the reactive compatibilization of MP and ATBN, which led to a uniform and fine morphology. The compatibilization increased the crystallization rate and reduced the size of the spherulites of PP. On the other hand, it was found that the dispersed vulcanized NBR particles lowered the degree of crystallinity. The better the compatibility of the blend was, the lower the degree of crystallinity and the storage modulus were, but the higher the loss factor and the processing viscosity were. All TPVs showed almost the same oil resistance, but the TPV prepared with reactive compatibilization had the best mechanical properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
The melting and crystallization behavior of isotactic polypropylene/natural rubber (PP/NR) based thermoplastic elastomers (TPEs) were investigated using differential scanning calorimetry. The samples were scanned at a heating rate of 10°C/min under nitrogen atmosphere. The effects of blend ratio on the melting and crystallization characteristics of the blends were analyzed. Normalized crystallinity is unchanged by the addition of small amount of NR, but as the amount of rubber increases crystallinity increased for the 30/70 NR/PP and lowered for the 50/50 NR/PP blend system. Morphology of the blend was analyzed using scanning electron microscopy (SEM). Blend ratio showed a pronounced influence on the phase morphology of the NR/PP TPEs. As the amount of NR increases more than 50 wt % the system changes from dispersed to cocontinuous structure. Hot‐stage polarizing optical microscopy (POM) was used to study the radial growth of spherulite as a function of blend ratio, cooling rate, and crystallization temperature. Spherulite growth rate is marginally influenced by the rubber inclusions. The spherulite morphology observed under polarized optical microscopy is influenced by the blend morphology. It was found that for the cocontinuous 50/50 blend system, spherulites are much different from the usual appearance under polarized light. Attempts have been made to correlate the crystallization behavior with the morphology of the blend. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
《Polymer》2014,55(26):6940-6947
Thermoplastic elastomer nanocomposites based on acrylonitrile butadiene rubber (NBR) and poly(ethylene-co-vinyl acetate) (EVA) with different weight ratios (20, 40 and 60 wt% of NBR) and 5 wt% of organocaly (OC) were prepared in an internal mixer. The results obtained from X-ray diffraction and transmission electron microscopy (TEM) micrographs showed that due to the OC–EVA interaction, nearly all of the clay platelets were exfoliated. Scanning electron microscope (SEM) was used to investigate the particle size and phase morphology. SEM images for the unfilled blends revealed a two-phase structure in which the NBR domains were dispersed into the EVA phase. However, for the blend containing 60 wt.% of NBR, a co-continuous morphology was exhibited. The addition of OC decreased the NBR domain size significantly in which NBR remained as a dispersed phase even for the blend having the highest amount of NBR studied. Young's modulus and yield stress increased, but elongation at break and stress at break decreased for the nanocomposites in comparison with that of the unfilled materials. Thermal studies indicated that although OC decreased the degree of crystallinity and crystallization temperature of EVA slightly, it showed no effect on EVA melting temperature in comparison with that of the unfilled samples. It was also found that the nanocomposites behaved as shear thinning fluids over the entire range of angular frequency and the values of storage modulus and stress relaxation modulus of the nanocomposite containing 20 wt% of NBR was even higher than that of the NBR alone.  相似文献   

4.
A method of developing an electrical conductivity in polypropylene (PP) with a very low loading of multiwalled carbon nanotube (MWCNT) by melt‐mixing method was described. PP/high‐density polyethylene (HDPE; 70/30, w/w) was melt blended simultaneously in the presence of MWCNT using two sequential heating protocol (MWCNT was first interacted with HDPE chain at 140°C followed by melt blending of PP at 200°C). Very interestingly, a cocontinuous morphology in the blend was found even for very high asymmetric composition. This has been explained in terms of barrier effect of the MWCNT dispersed selectively in the HDPE phase that restricts the phase inversion into the matrix droplet morphology. A simple method was used for proper dispersion, distribution, and formation of effective conducting network path [carbon nanotube (CNT)–CNT contact] of MWCNT through cocontinuous HDPE phase (minor phase) into PP matrix of the blend which in turn enhanced the electrical conductivity of the nanocomposite with minimum percolation threshold. The percolation threshold of PP/HDPE/MWCNT nanocomposite found at 0.352 wt% loading of MWCNT, which is significantly lower than those reported for developing electrical conductivity in PP/MWCNT nanocomposite. Phase morphology, extent of dispersion and location of the MWCNT in the blend has been investigated with a scanning and transmission electron microscopy. Thermal and mechanical properties of PP/HDPE/MWCNT nanocomposite with variation of MWCNT loading have also been studied. POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

5.
Blends based on ethylene–propylene–diene monomer rubber (EPDM) and acrylonitrile butadiene rubber (NBR) was prepared. Sulfur was used as the vulcanizing agent. The effects of blend ratio on the cure characteristics and mechanical properties, such as stress–strain behavior, tensile strength, elongation at break, hardness, rebound resilience, and abrasion resistance have been investigated. Tensile and tear strength showed synergism for the blend containing 30% of NBR, which has been explained in terms of morphology of the blends attested by scanning electron micrographs. A relatively cocontinuous morphology was observed for 70 : 30, EPDM/NBR blend system. The experimental results have been compared with the relevant theoretical models. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

6.
Blends of polypropylene (PP) and thermoplastic elastomers (TPE), namely SBS (styrene‐butadiene‐styrene) and SEBS (styrene‐ethylene/1‐butene‐styrene) block copolymers, were prepared to evaluate the effectiveness of the TPE type as an impact modifier for PP and influence of the concentration of elastomer on the polymer properties. Polypropylene homopolymer (PP‐H) and ethylene–propylene random copolymer (PP‐R) were evaluated as the PP matrix. Results showed that TPEs had a nucleating effect that caused the PP crystallization temperature to increase, with SBS being more effective than SEBS. Microstructure characterization tests showed that in most cases PP/SEBS blends showed the smallest rubber droplets regardless of the matrix used. It was seen that SEBS is a more effective toughening agent for PP than SBS. At 0°C the Izod impact strength of the PP‐H/SEBS 30% b/w blend was twofold higher than the SBS strength, with the PP‐R/SEBS 30% b/w blend showing no break. A similar behavior on tensile properties and flexural modulus were observed in both PP/TPE blends. Yield stress and tensile strength decreased and elongation at break increased by expanding the dispersed elastomeric phase in the PP matrix. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 254–263, 2005  相似文献   

7.
PET/PP共混体系的熔融及非等温结晶行为   总被引:6,自引:1,他引:5  
用熔融共混法制备了聚对苯二甲酸乙二醇酯(PET)/聚丙烯(PP)复合材料。对复合体系的形态结构、熔融及非等温结晶行为进行了研究。结果表明:两相界面或PP相对PET结晶无明显的异相成核效应;当PP为连续相时,已结晶的极性PET粒子对PP的异相成核作用较为明显;而当PP为分散相时,固态的PET在一定程度上阻碍了PP分子链的运动,促使PP结晶均相成核趋势增加。与纯PET或PP相比,共混体系中两组分结晶的完善程度都有所下降。  相似文献   

8.
The effects of dynamic vulcanization and blend ratios on mechanical properties and morphology of thermoplastic elastomeric (TPE) compositions, based on blends of nitrile rubber (NBR) and poly(styrene‐co‐acrylonitrile) (SAN), were studied. The TPE composition prepared by adding a rubber‐curatives masterbatch to softened SAN yields higher mechanical properties than that prepared by adding curatives to the softened plastic–rubber preblend. The blends having a higher rubber–plastic ratio (60 : 40 to 80 : 20) display thermoplastic elastomeric behavior, whereas those having a higher plastic–rubber ratio (50 : 50 to 90 : 10) display the behavior of impact‐resistant plastics. DSC studies revealed that NBR and SAN are thermodynamically immiscible. SEM studies of the thermoplastic elastomeric compositions show that SAN forms the matrix in which fine particles of NBR form the dispersed phase. It was further confirmed by dynamic mechanical thermal analysis. Dynamic vulcanization causes a decrease in the size of dispersed particles and improvement in mechanical properties. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1976–1987, 2003  相似文献   

9.
Our study was focused on the presupposition that morphology control in immiscible polymer blend could give rise to reinforcement in composites. To investigate the effects of shear and elongational flow in polymer processing, observation of the mechanical properties and the morphology of the polypropylene/polycaprolactone (PP/PCL) blend system was performed. PP/PCL sheets were fabricated by means of a single‐screw extruder equipped with a slit‐type die to which high shear and elongational stresses were applied. For the sake of comparison, a second series of composites of identical composition was compression molded with a hot‐press machine that transmits lower shear and elongational stresses. The results indicate that the extruded sheets have better mechanical properties than those of the compression‐molded sheets, a result attributed to the generation of in situ dispersed long fiber minor phases and cocontinuous phases in the extruded composites. The differences in the crystallization behavior of the fibrous and spherically shaped components were indicated clearly by DSC curves. A PP crystalline peak indicative of in situ PP fiber formation is conspicuous around 980 cm−1 (PP crystalline band) in the FTIR spectrum. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 833–840, 2004  相似文献   

10.
相容剂对NBR/PP共混型热塑性弹性体性能的影响   总被引:9,自引:2,他引:9       下载免费PDF全文
考察了普通氯化聚乙烯(CPE)、高氯化CPE、马来酸酐接枝聚丙烯及复合氯化聚丙烯(CPP)等相容剂对NBR/PP共混体系性能的影响。试验结果表明,复合CPP是NBR/PP共混体系的理想相容剂,其最佳用量为6份;以此为相容剂的NBR/PP共混体系具有优良的热塑性,NBR/PP共混型热塑性弹性体可采用热塑性塑料通用的加工方法进行加工。  相似文献   

11.
Phase morphology of polymer blends PP/COC, where PP is polypropylene and COC is a copolymer of ethene and norbornene, was characterized by means of scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM). PP/COC blends were prepared by injection molding and their morphology was studied for six different compositions (90/10, 80/20, 70/30, 60/40, 50/50, and 25/75 wt %). The intention was to improve PP properties by forming COC cocontinuous phase, which should impart to the PP matrix higher stiffness, yield stress, and barrier properties. Surprisingly enough, all studied blends were found to have fibrillar morphology. In the 90/10, 80/20, and 70/30 blends, the PP matrix contained fibers of COC, whose average diameter increased with increasing COC fraction. In the 60/40 blend, the COC component formed in the PP matrix both fibers and larger elongated entities with PP fibers inside. The 50/50 blend was formed by COC cocontinuous phase with PP fibers and PP cocontinuous phase with COC fibers. In the 25/75 blend, PP fibers were embedded in the COC matrix. In all blends, the fibers had an aspect ratio at least 20, were oriented in the injection direction, and acted as a reinforcing component, which was proven by stress–strain and creep measurements. According to the available literature, the fibrous morphology formed spontaneously in PP/COC is not common in polymer blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 253–259, 2004  相似文献   

12.
The influence of trans‐polyoctylene rubber (TOR) on the mechanical properties, glass‐transition behavior, and phase morphology of natural rubber (NR)/acrylonitrile–butadiene rubber (NBR) blends was investigated. With an increased TOR level, hardness, tensile modulus, and resilience increased, whereas tensile strength and elongation at break tremendously decreased. According to differential scanning calorimetry and dynamic mechanical analysis, there were two distinct glass‐transition temperatures for a 50/50 NR/NBR blend, indicating the strongly incompatible nature of the blend. When the TOR level was increased, the glass transition of NBR was strongly suppressed. NBR droplets of a few micrometers were uniformly dispersed in the continuous NR phases in the NR/NBR blends. When TOR was added to a 50/50 NR/NBR blend, TOR tended to be located in the NR phase and in some cases was positioned at the interfaces between the NBR and NR phases. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 125–134, 2002  相似文献   

13.
Polymer blends based on high-density polyethylene (HDPE) and acrylonitrile butadiene rubber (NBR) were prepared by a melt blending technique. The mixing parameters such as temperature, time, and speed of mixing were varied to obtain a wide range of properties. The mixing parameters were optimized by evaluating the mechanical properties of the blend over a wide range of mixing conditions. The morphology of the blend indicated a two-phase structure in which NBR phase was dispersed as domains up to 50% of its concentration in the continuous HDPE matrix. However, 70 : 30 NBR/HDPE showed a cocontinuous morphology. The tensile strength, elongation at break, and hardness of the system were measured as a function of blend compostion. As the polymer pair is incompatible, technological compatibilization was sought by the addition of maleic-modified polyethylene (MAPE) and phenolic-modified polyethylene (PhPE). The interfacial activity of MAPE and PhPE was studied as a function of compatibilizer concentration by following the morphology of the blend using scanning electron micrographs. Domain size of the dispersed phase showed a sharp decrease by the addition of small amounts of compatibilizers followed by a leveling off at higher concentrations. Also, more uniformity in the distribution of the dispersed phase was observed in compatibilized systems. The tensile strength of the compatibilized systems showed improvement. The mechanical property improvement, and finer and uniform morphology, of compatibilized systems were correlated with the improved interfacial condition of the compatibilized blends. The experimental results were compared with the current theories of Noolandi and Hong. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
对动态硫化法制备的丁腈橡胶/尼龙(NBR/PA)热塑性弹性体的相态和结晶行为,以及它们对材料性能的影响作了研究。透射电子显微镜观察表明,在NBR/PA为80/20~20/80(质量比)时,热塑性弹性体的连续相和分散相分别为PA和NBR,未出现相转变。分散相的粒径随NBR用量和交联度的提高而增大,粒径分布则随之变宽。差示扫描量热仪测定表明,动态硫化作用和增大NBR用量,均能降低PA的熔点和结晶度。共混体的结晶结构可以提高材料的弹性模量和拉伸强度。  相似文献   

15.
Attempts were made to follow and correlate morphological development with the crosslinking density, or state of cure (SOC), and the surface tension (γ) of the rubber phase in dynamically cured thermoplastic elastomers (TPEs) based on ethylene propylene diene rubber and polypropylene (PP) with 60/40 (w/w) ratios. Samples were taken from a hot running mixer without interruption and quickly quenched in liquid nitrogen both before and after the onset of vulcanization at various SOCs to carry out this process. The quick cooling of the samples prevented the coalescence and agglomeration of the dispersed rubber particles. A two‐phase morphology with the rubber particles dispersed throughout the PP matrix was observed for the uncured but frozen samples, whereas unfrozen blend samples showed a particulate cocontinuous morphology in the uncured state. An increase in the mixing torque with the SOC was observed after the addition of a curing system. This was understood to be caused by the increase in the rubber crosslinking density and also by the enhancement of the interfacial adhesion between the cured rubber phase and the PP matrix, leading to the better wetting of the two phases. Above a certain crosslinking density (SOC), γ of the rubber particles decreased through elastic shrinkage. This phenomenon, together with the breakdown of the agglomerate structure formed by the cured rubber particles, led to a decrease in the mixing torque after a maximum was passed and, finally, to a defined morphology. Based on the obtained results, a four‐stage model is proposed to describe the microstructural development in dynamically vulcanized TPEs. Dynamic mechanical thermal analysis and differential scanning calorimetry results are also used to support the model. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2531–2544, 2001  相似文献   

16.
以全硫化超细粉末丁苯橡胶(PSBR)与聚丙烯(PP)为原料,采用双螺杆挤出机共混方法制备PP/PSBR全硫化热塑性弹性体。通过透射电镜观测,发现PP/PSBR全硫化热塑性弹性体具有和动态硫化方法制备的热塑性弹性体相似的微观形态,PSBR粒子作为分散相分散在连续相PP中;所制备的热塑性弹性体的力学性能与PP的相对分子质量、共聚与否、PSBR含量及其交联度有关;通过流变行为研究,发现此类全硫化热塑性弹性体为假塑性流体,且橡胶的含量对热塑性弹性体的黏度影响很小;采用差示扫描量热法对PP/PSBR全硫化热塑性弹性体中连续相PP的结晶行为进行了研究,发现连续相PP的结晶温度提高,表明PSBR对PP有异相成核作用。  相似文献   

17.
NBR/PP共混热塑性弹性体材料的研究   总被引:9,自引:0,他引:9  
通过分别选择普通CPE,高氯化CPE,MP(马来酸酐接枝聚丙烯的简称),复合CPP等对NBR/PP共混体系进行增容研究;利用半有效硫化体系(S+促进剂TMTD/促进剂CZ)以及改性树脂硫化体系(改性树脂+促进剂)为硫化体系对共混体系进行动态全硫化研究;用透射电镜研究其中部分共混体系的亚微观结构,讨论其与共混体系宏观性能间的关系;利用差热分析(DSC)对连续相的结晶形态进行研究。实验研究表明,以CPP为增容剂的共混体系经过动态全硫化后具有优良的耐热油及其他综合性能,适用于制造耐热油制品,具有广阔的应用前景。  相似文献   

18.
Polyamide 6 (PA 6) and hydrogenated nitrile rubber (H‐NBR) were blended with various blend ratios in a brabender plasticoder at 240°C/100 rpm. The processing characteristics with a mixing torque of the blends were investigated. The effect of the blend ratio on physical properties such as tensile strength, Young's modulus, elongation at break, permanent set, hardness, and swelling behavior of blends was analyzed. Most mechanical properties were found to decrease with an addition of H‐NBR. The morphology of the blends was observed, and the results show a two phase system where the component with high proportions exists as a continuous phase. A cocontinuous phase was observed in blend ratios of 50/50 and 40/60. Dynamic mechanical properties were observed to study a viscoelastic property of the blends. In addition, the effect of dynamic vulcanization with peroxide on physical properties was studied, and the influence of peroxide on PA 6 was also examined. It was found that the peroxide can have an effect on PA 6 as well as act as a crosslinker to H‐NBR. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
Electrically conductive thermoplastic vulcanizates (TPV) based on polypropylene (PP)/nitrile rubber (NBR) blends loaded with multiwalled carbon nanotube (CNT) were prepared by dynamic vulcanization. CNT was incorporated into the system using two different mixing sequences: (i) one-step method, by adding CNT after the PP and NBR and (ii) two-steps method involving a previous PP/CNT master batch. Scanning electron microscopy and transmission electron microscopy were used to analyze the morphology of the nanocomposites. Dynamic-mechanical analysis and rheological properties were also used for characterizing the TPV and TPE samples. Both mixing strategies favored the location of the CNT inside the PP phase. The one-step approach resulted in a percolation threshold as low as 0.19 vol% with conductivity value of 0.04 S m−1 for the system loaded with only 0.50 vol% of CNT. The electromagnetic interference shielding effectiveness and microwave absorbing properties were evaluated in the X-band frequency range. The TPV samples prepared by both methods displayed an overall electromagnetic attenuation of around 70%.  相似文献   

20.
The influence of rotating shear on morphology, crystallization behavior, and crystalline structure of polyoxymethylene (POM) and high density polyethylene (HDPE) blend was investigated by polarized light microscopy (PLM) connected with a CSS450 shearing hot‐stage, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X‐ray diffraction. The experimental results showed that the crystalline and dispersion morphology of POM/HDPE (50/50) blend were strongly affected by shearing, while the crystallization temperature and rate of crystallization of POM in the sheared blend increased with no significant change in the crystalline structure of the blend. In the unsheared blend, phase separation appeared between POM and HDPE which crystallized separately and the bicontinuous phase morphology was formed. But for the sheared blend, a large number of compact and regular shish‐kebabs emerged in POM phase and the phase domains of HDPE oriented along the direction of shear flow separating from one another so that the shearing aggravated the phase separation. There is no special interaction between POM and HDPE and these two polymers crystallized individually, differing from that of POM/PEO blend. J. VINYL ADDIT. TECHNOL., 24:147–153, 2018. © 2016 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号