首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biosynthesis of the phenolic fraction of olive fruits during ripening and the transformations occurring in this moiety during virgin olive oil (VOO) extraction are discussed in this paper. The influence of agronomical factors that can significantly affect the phenolic profile of VOO is also discussed. Particularly, it is worth emphasizing the role of genetic factors, cultivation and climatic conditions such as water availability, atmospheric temperature, altitude, health status of the fruits, alternate bearing in the olive, and some processing factors such as crushing, malaxation time and temperature or volume of water added during milling. Among these parameters, special attention has been paid to genetic factors due to the high variability observed among Olea europaea genotypes for all recorded traits. In this context, interesting experimental results have been obtained with cultivated and wild olive trees, and also with segregating populations resulting from olive breeding programs. To the authors' knowledge, reviews evaluating the influence of the main factors that contribute to the profile of hydrophilic phenols have not been previously published. The discussion concerning olive breeding programs is a major and novel aspect to be emphasized considering recent trends to obtain new olive cultivars that confer better organoleptic properties and better quality to VOO.  相似文献   

2.
Cross‐flow microfiltration (MF) and ultrafiltration (UF) with different commercial membranes were applied to virgin olive oil (VOO) in order to remove some compounds that are responsible for oil unpleasant flavor without altering the oil composition. Experimental tests were carried out using a Spanish VOO from Andalusia, which had the typical eucalyptus aroma. Several classical analytical parameters (acidity, peroxide number, UV absorbance) were determined. Moreover, the contents of total chlorophyll and minor polar compounds were detected. The effect of filtration on oil aroma was evaluated by detecting carbonyl compounds and by a panel of trained tasters. The UF Carbosep M1 membrane was the most suitable for softening the oil organoleptic features. Carbosep UF M1 and MF M14 membranes also induced a reduction of the content of total chlorophyll, which certainly slowed down the oil oxidation processes. It should be considered, however, that the observed decrease in the content of phenolic compounds with Carbosep M1 might have an adverse affect on the oil's stability to oxidation, but the observed decrease in total chlorophyll content should oppose it.  相似文献   

3.
In recent years, phenolic acids have received considerable attention as they are essential to olive oil quality and nutritional properties. This study aims to validate a rapid and sensitive method based on ultra‐performance liquid chromatography/time‐of‐flight mass spectrometry (UPLC–TOF‐MS) for analyzing the phenolic acid content of olive oil and assessing its impact on virgin olive oil (VOO) sensory attributes. Once this method was validated, we used it to evaluate the phenolic acid composition of several Spanish monovarietal virgin olive oils in relation to nine different olive ripening stages. The results obtained confirm that the methodology developed in this study is valid for extracting and analyzing phenolic acids from VOO. The phenolic acid content of the virgin olive oils sampled was proven to be influenced by the type of cultivar and olive harvest date. Therefore, phenolic acids might be used as potential markers for olive oil cultivar or ripening stage. Finally, the data obtained indicate that the sensory properties of VOO may be differently affected by its phenolic acid content depending on the type of cultivar. Practical applications: The method validated in the present study – based on UPLC‐TOF‐MS – allows experts to assess the phenolic acid content of different VOO cultivars (varieties). This application will probably be very useful to the olive oil industry. The reason is that our study revealed that phenolic acids have an impact on the sensory quality of VOO, which is essential to consumer preferences and choice. In addition, there are phenolic acids that are only found in a particular variety of olive oil obtained from fruits at a specific ripening stage. Consequently, phenolic acids could be used as potential markers for olive oil variety and harvest time.  相似文献   

4.
Olive leaf‐olive oil preparations were obtained by vigorous mixing at various levels of addition (5, 10, 15%w/w) of new or mature leaves. After removal of the plant material via centrifugation, quality and sensory characteristics of the preparations were determined. Oxidative stability (120°C, 20 L/h) and DPPH radical scavenging were increased ~2–7 fold depending on the level of leaves used due to enrichment with polar phenols, mainly oleuropein, and a‐tocopherol. The extraction process affected the chlorophyll content and organoleptic traits as indicated by acceptability and preference tests (n = 50). Forty‐four % of the panelists identified a strong pungency in preparations with 15% w/w new leaves. Fifty‐four % of them identified a bitter taste in those with 15% w/w mature leaves, which was attributed to high levels of oleuropein (~200 mg/kg oil). Olive leaf‐olive oil preparations had interesting properties regarding antioxidants present that can attract the interest of a functional product market. Practical applications: The wider use of olive oil and derived products is highly desirable. In this sense, the current study presents data that support introduction to the market of a new specialty olive oil based solely on olive tree products (olive oil and leaves). Thus, in addition to olive oil and olive paste, a new product, that is an olive oil enriched with olive leaf antioxidants, especially oleuropein produced via a “green” technique (mechanical means instead of extraction with organic solvent) can be made available for consumers.  相似文献   

5.
Phenolic compounds have a high importance in olive oil because of their effect on shelf life and sensory properties. This study reports on the HPLC profiles of the phenolic compounds of virgin olive oils obtained from Arbequina olives from the harvesting in a super‐intensive orchard under a linear irrigation system. In addition, phenolic content, carotenoid and chlorophyllic pigments, and oxidative stability were analyzed. Total phenol content and 3,4‐DHPEA‐EDA increased up to a maximum throughout the ripening process. The simple phenols tyrosol and hydroxytyrosol acetate increased throughout the ripening process, however, there was not found a clear trend in hydroxytyrosol content. Minor constituents such as vanillic acid and p‐coumaric acid increased up to a maximum and then decreased, since vanillin decreased progressively throughout the time of harvest. 3,4‐DHPEA‐EDA and lignans were present in considerable amounts in the studied samples, while oleuropein aglycone was present in a low amount. Total phenol content and oil stability followed the same trend throughout the study, so a very good correlation was established between them. Total secoiridoids and, specifically, 3,4‐DHPEA‐EDA seemed to be responsible for oil stability. The pigment content decreased during ripening, and not a positive correlation was found between pigments and oil stability. Practical applications : The results can be used to determine the best time for harvesting in order to obtain olive oils with different phenols and pigment contents. This is important for sensory characteristics of the olive oils and also for olive oil stability.  相似文献   

6.
Several studies have suggested that the phenolic fraction plays an important role during storage and therefore in the shelf life of virgin olive oil. This investigation examines the effect of freezing olives (–18 °C) before processing into oil on the transfer of the phenolic compounds into the subsequent oil, and the consequential changes in oxidative stability. Oil samples obtained from frozen olives (24 h at –18 °C), crushed with and without preliminary thawing, were compared to a control sample; both oils were obtained using a two‐phase low‐scale mill. The oxidative stability in different samples was assessed in terms of primary and secondary oxidation products as measured by peroxide values and oxidative stability index times, respectively. The quality of the oil samples was also checked through the percentage of free acidity and the phenolic content. Phenols were determined by both spectrophotometric assays (total phenols and o‐diphenols) and HPLC‐DAD/MSD. The antiradical capacity of the phenolic fraction was determined by DPPH and ABTS spectrophotometric tests. These analyses showed that thawing of olives before oil extraction led to a significant loss of oxidative stability and phenols; in contrast, samples obtained from frozen olives that were not thawed before crushing showed qualitative characteristics similar to control samples.  相似文献   

7.
The phenolic composition and antioxidant activity of several monovarietal extra virgin olive oils used as blenders for the production of Collina di Brindisi protected designation of origin (PDO) oil, produced between December 2008 and January 2009 using two‐phases or three‐phases extraction system, were evaluated and compared with other manufacturer products designated as PDO. Oils were taken from the most representative ones industrial oil mills in the PDO geographical area. The parameters assessed were free acidity, peroxide value, K232 and K270 indices, organoleptic characteristics, total phenolic content (TPC), phenolic profile, and antioxidant activity coefficient (AAC). The phenolic contents and profiles of the monovarietal oils showed remarkable differences with respect to PDO oils. The variables that exerted a major influence on phenols concentration were the maturity degree of olives (December>January), followed by the extraction system (two‐phase>three‐phase), and place of growing. The Pearson r correlation index showed that AAC was positively correlated with TPC, p‐coumarate, and 3,4‐DHPEA‐EA, and negatively correlated with peroxide value. Practical applications: The results provide detailed information about: (i) the phenolic composition and the AAC of several monovarietal extra virgin olive oils used as blenders for the production of a PDO oil; (ii) the impact of genetic variability, place of growing, olive maturity degree, and extraction technology on oil phenol compounds; and (iii) the relationships among each phenolic compound and AAC, and their potential utilization as analytical index of antioxidant activity. It is important to study the phenolic compounds and antioxidant activity of monovarietal extra virgin olive oils used to produce PDO oil and to compare with the relative PDO samples in order to define a possible analytical tool able to verify what is stated in the label for consumer information and protection.  相似文献   

8.
Quality of virgin olive oil (VOO) depends on phenolic molecules content, which depends on the biochemical characteristics of olive fruits, namely endogenous enzymes. In order to ascertain the influence of olive fruit ripening degree on the phenol content, enzyme activities in olive fruits, and the quality of the corresponding oils were studied during Oueslati olive ripening. In fact, three enzymes were studied: peroxidase (POX) in olive seeds, polyphenoloxidase (PPO), and β-glucosidase (β-GL) in olive fruits mesocarp. Each enzyme showed specific trend: POX activity increased gradually until reaching a maximum (17.061 ± 0.101 U g−1 FW) at ripening index (RI) 3.6 and then decreased slowly at advanced ripening stage. However, the maximum of PPO activity (240.421 ± 0.949 U g−1 FW) was observed earlier at RI of 0.7. Concerning β-glucosidase activity, its maximal was 60.857 ± 1.105 U g−1 FW at RI 2.8, then, it decreased sharply to reach 17.096 ± 0.865 U g−1 FW at RI 3.9. A significant increase of total phenol content as well as the antioxidant activity were observed during Oueslati olive ripening. Moreover, phenolic profile indicated that appropriate harvesting date of Oueslati olives coincided with RI 3.9 given that highest content of most important individuals phenolic compounds responsible for the main VOO biological properties achieved on this date. Furthermore, phenols amount of Oueslati VOO was principally due to PPO enzyme activity as the increase in total phenols coincides with the decrease in PPO activity.  相似文献   

9.
The influence of a new crusher i.e. blade crusher on the quality of virgin olive oil from two different italian cultivars (Coratina and Oliarola) was determined. In addition the quality of this oil was compared with that of olive oil extracted with the traditional hammer crusher. Tests were performed in an industrial oil mill using the two different crushing instruments. Results obtained showed that quality parameters i.e. free fatty acids, peroxide value, UV absorption and total phenols content as well as the phenolic composition of oils were not significantly affected by the two different crushers used. On the contrary, the use of the blade crusher influenced the composition of the volatile compounds. In particular, the oils obtained using the blade crusher showed significant increases of some aldehydes such as 1‐hexanal and trans‐2‐hexenal, esters such as hexyl acetate and 3‐hexenyl acetate and a reduction of alcohols such as 1‐hexanol. Moreover, the identified pigments of the oils produced using the blade crusher were found at concentrations slightly lower than those in oils obtained after using the hammer crusher. Finally, results of the sensory analysis showed an improved organoleptic quality for the oils obtained using the blade crusher due to an increase of the cut‐grass and floral sensory notes.  相似文献   

10.
The factors influencing the oxidative stability of different commercial olive oils were evaluated. Comparisons were made of (i) the oxidative stability of commercial olive oils with that of a refined, bleached, and deodorized (RBD) olive oil, and (ii) the antioxidant activity of a mixture of phenolic compounds extracted from virgin olive oil with that of pure compounds andα-tocopherol added to RBD olive oil. The progress of oxidation at 60°C was followed by measuring both the formation (peroxide value, PV) and the decomposition (hexanal and volatiles) of hydroperoxides. The trends in antioxidant activity were different according to whether PV or hexanal were measured. Although the virgin olive oils contained higher levels of phenolic compounds than did the refined and RBD oils, their oxidative stability was significantly decreased by their high initial PV. Phenolic compounds extracted from virgin olive oils increased the oxidative stability of RBD olive oil. On the basis of PV, the phenol extract had the best antioxidant activity at 50 ppm, as gallic acid equivalents, but on the basis of hexanal formation, better antioxidant activity was observed at 100 and 200 ppm.α-Tocopherol behaved as a prooxidant at high concentrations (>250 ppm) on the basis of PV, but was more effective than the other antioxidants in inhibiting hexanal formation in RBD olive oil.o-Diphenols (caffeic acid) and, to a lesser extent, substitutedo-diphenols (ferulic and vanillic acids), showed better antioxidant activity than monophenols (p- ando-coumaric), based on both PV and hexanal formation. This study emphasizes the need to measure at least two oxidation parameters to better evaluate antioxidants and the oxidative stability of olive oils. The antioxidant effectiveness of phenolic compounds in virgin olive oils can be significantly diminished in oils if their initial PV are too high.  相似文献   

11.
The overall quality of virgin olive oil (VOO) is closely related to its oxidative stability that is usually evaluated through the stability index measured by the Rancimat apparatus. Quality characteristics and also pro‐oxidant and antioxidant content for 52 Greek VOO samples (Koroneiki cv) were used to build up a model capable of predicting stability. Collinearity diagnostics, variable selection, and regression analysis were applied to the experimental data to locate the contribution of each parameter to the keeping quality of the samples. The predictive ability of the model was confirmed for a second VOO ample set of the same cultivar. It was found that except for the peroxide value, which negatively influences the stability, other important parameters were α‐tocopherol, total polar phenol and total chlorophyll content. It is concluded that the colorimetric determination of total polar phenols, the spectrometric determination of total chlorophylls and the high‐performance liquid chromatography analysis of α‐tocopherol, not presently included in the established methods of official analysis, can be used for a better evaluation of VOO quality. These parameters, which can be easily adopted as routine methods by the industry, seem to be of utmost importance for shelf life prediction and expiration dating if applied for the promotion of the most competitive products in the international olive oil market.  相似文献   

12.
Fruits from three Tunisian cultivars of Olea europea L. grown in the southeast of Tunisia were harvested at the maturity stage of ripeness and immediately processed with a laboratory mill. There are as yet no data on the chemical composition of virgin olive oils from the southeast of Tunisia, an area characterized by an arid condition of growth for olive trees. Our results showed significant differences in the analytical parameters examined for the three cultivars such as fatty acid composition, total phenols and o‐diphenols, and the content of chlorophylls and carotenoids, confirming the importance of genetic factors in the chemical characteristics of the oil. Headspace solid‐phase microextraction (HS‐SPME) was applied to the analysis of volatile compounds of virgin olive oils. Forty‐eight compounds were isolated and characterized by GC‐RI and GC‐MS, representing 94.1–98.1% of the total amount. (E)‐Hex‐2‐enal, the main compound extracted by SPME, characterized the olive oil headspace for all samples. So, it was clearly shown that there were qualitative and quantitative differences in the proportion of volatile constituents from oils of the various cultivars.  相似文献   

13.
Bitterness is an important sensory attribute of virgin olive oil (VOO). It is usually assessed by tasting, which is a time‐consuming method and needs trained tasters. Bitterness is related to the phenolic compounds and can be estimated by the measurement of the specific absorbance at 225 nm (K225). This paper proposes to evaluate oil bitterness intensity as estimated from the K225 values measuring the phenol content. A significant relationship between phenol content and K225 as well as a prediction model for bitterness intensity estimation from the phenol content was obtained. Classification of oil bitterness was based on the phenol content. Furthermore, when 12 VOO samples were classified by their bitterness intensities as estimated by the prediction model and by sensory analysis, more than 92% of the oil samples were correctly classified. Therefore, by measuring the phenol content, the bitterness intensity can be estimated and oils can be classified by their bitterness. This model may represent an easy method to evaluate the bitterness intensity without any sensory assessment.  相似文献   

14.
Phenolic compounds are of fundamental importance to the shelf life of virgin olive oils because of their antioxidative properties. In this paper, the evolution of simple and complex olive oil phenols during 18 mon of storage is studied by high-performance liquid chromatography (HPLC) analysis. The olive oils under examination were from various olive cultivars, harvested in two sectors in the same region at different stages of ripeness. The findings indicate that it is not the variety but rather the ripeness of the olives and the soil and climate that influence the phenol composition of virgin olive oil. In addition, a positive correlation was found between the age of the oils and the tyrosol to total phenols ratio. Lastly, gas chromatography-mass spectrometry analysis confirmed that the unidentified peaks detected by HPLC were of a phenolic nature.  相似文献   

15.
The antioxidant effects of hydrophilic phenols and tocopherols on the oxidative stability in virgin olive oils and in purified olive oil have been evaluated. Total hydrophilic phenols and the oleosidic forms of 3,4-dihydroxyphenolethanol (3,4-DHPEA) were correlated (r=0.97) with the oxidative stability of virgin olive oil. On the contrary, tocopherols showed low correlation (r=0.05). Purified olive oil with the dialdehydic form of elenolic acid linked to 3,4-DHPEA, an isomer of oleuropeine aglycon, and 3,4-DHPEA had good oxidative stability. A synergistic effect was observed in the mixture of 3,4-DHPEA and its oleosidic forms with α-tocopherol in purified olive oil by the Rancimat method at 120°C.  相似文献   

16.
Research has been carried out to ascertain the influence of different centrifugal decanters employed in olive process on oil yields and qualitative characteristics and composition of volatile compounds of virgin olive oil. Tests were performed in an olive oil mill equipped with centrifugal decanters at two or three‐phases. Results show that oil yields were similar and oils extracted from good‐quality olives do not differ in free fatty acids, peroxide value, UV absorptions and organoleptic assessment. Total phenols and o‐diphenols content as well as induction time values are higher in oils obtained by the centrifugal decanter at two‐phases, because it requires less quantity of water added to olive paste in comparison to the three‐phases centrifugal decanter. The amount of water added determines the dilution of the aqueous phase and lowers the concentration of the phenolic substances more soluble in vegetable waste water. Due to the partition equilibrium law the concentration of the same substances consequently diminishes in the oil. In this research, the coefficient of the partition equilibrium of total phenols between oil and vegetable water has been calculated and discussed. No significant difference occurred, due to the different decanters employed, in the average values of the volatile components of the head‐space of oils.  相似文献   

17.
We performed a survey on the yield, quality, and chemical characteristics of virgin olive oils from two olive varieties in Croatian Istria: Frantoio and Ascolana tenera, on Cherry leafroll virus‐infected and virus‐noninfected trees and on two harvest dates. Free acidity, peroxide value, specific spectrophotometric absorptions at 232 and 270 nm, fatty acid composition, total phenols, o‐diphenols, oil color, and pigments were determined. Infected olives had lower oil yield and maturity index versus healthy ones. Oils from infected fruits had significant lower value of K232 and K270 and very elevated total phenols content compared to those obtained from healthy olives. Infected Frantoio gave a lower content of o‐diphenols than the healthy ones, which is in contrast to infected Ascolana that had higher values. The aim of this study is to determine the chemical changes in virgin olive oils from healthy and infected trees related to virus influence. According to our knowledge, this is the first survey on the possible influence of viruses on olive fruits, oil yield, and virgin olive oil quality. Practical applications : There are only few papers which analyze the influence of viruses on crops (especially influence on wine quality) and their effects on yield or other agronomic parameters. This work evaluates for the first time the impact of Cherry leafroll virus on the quality of virgin olive oil obtained from Frantoio and A. tenera varieties in terms of basic parameters related to the hydrolitic and oxidative status, content in antioxidant compounds, and in pigments as well as in fatty acid composition.  相似文献   

18.
Research has been carried out to ascertai the effects of different processing systems on olive oil quality. Tests were performed in industrial oil mills that were equipped with both pressure and centrifugation systems. Results show that oils extracted from good-quality olives do not differ in free fatty acids, peroxide value, ultraviolet absorption and organoleptic properties. Polyphenols ando-diphenols contents and induction times are higher in oils obtained from good-quality olives by the pressure system because it does not require addition of water to the olive paste. The centrifugation system requires the addition of warm water to the olive paste and helps to obtain oils with a lower content of natural antioxidants. Oils obtained from poorquality or from ripe olives in continuous centrifugal plants are lower in free fatty acids than those obtained by the pressure system. Dr. Mario Solinas is deceased—May 23, 1993.  相似文献   

19.
Phenolic compounds are of fundamental importance to the quality and nutritional properties of virgin olive oils. In this paper, the high-performance liquid chromatographic analysis of simple and complex olive oil phenols in the streams generated in the two-phase extraction system was carried out using Arbequina and Picual olives. The malaxation stage reduced the concentration of orthodiphenols in oil ca 50–70%, while the concentration of the nonorthodiphenols remained constant, particularly the recently identified lignans 1-acetoxypinoresinol and pinoresinol. Oxidation of orthodiphenols at laboratory scale was avoided by malaxing the paste under a nitrogen atmosphere. Phenolic compounds in the wash water used in the vertical centrifuge were also identified. Hydroxytyrosol, tyrosol, the dialdehydic form of elenolic acid linked to hydroxytyrosol were the most representative phenols in these waters. Hence, phenolic compounds in the wash waters came from both the aqueous and the lipid phases of the decanter oily must.  相似文献   

20.
Total amounts of conjugated diene hydroperoxides and carbonyl compounds of a virgin olive oil (VOO) and its purified form as affected by 0.1–6% w/w bene kernel (BKO) and hull (BHO) oils were monitored during 16 h heating at 180°C. The VOO was more prone to the production of off‐flavour carbonyl compounds than to the formation of conjugated diene hydroperoxides. The VOOs oxidative stability decreased significantly due to the removal of the indigenous antioxidative compounds. Oxidative stability, especially regarding the secondary oxidation, significantly improved with increasing concentrations of the BKO than with those of the BHO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号