首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protective effect of phenolic compounds from an olive oil extract, and of olive oils with (extra-virgin) and without (refined) phenolic components, on low density lipoprotein (LDL) oxidation was investigated. When added to isolated LDL, phenolics [0.025–0.3 mg/L caffeic acid equivalents (CAE)] increased the lag time of conjugated diene formation after copper-mediated LDL oxidation in a concentration-dependent manner. Concentrations of phenolics greater than 20 mg/L inhibited formation of thiobarbituric-acid reactive substances after AAPH-initiated LDL oxidation. LDL isolated from plasma after preincubation with phenolics (25–160 mg/L CAE) showed a concentration-dependent increase in the lag time of conjugated diene formation after copper-mediated LDL oxidation. Refined olive oil (0 mg/L CAE) and extra-virgin olive oil (0.1 and 0.3 mg/L CAE) added to isolated LDL caused an increase in the lag time of conjugated diene formation after copper-mediated LDL oxidation that was related to olive oil phenolic content. Multiple regression analysis showed that phenolics were significantly associated with the increase in lag time after adjustment for effects of other antioxidants; α-tocopherol also achieved a statistically significant effect. These results indicate that olive oil phenolic compounds protect LDL against peroxyl radical-dependent and metal-induced oxidation in vitro and could associate with LDL after their incubation with plasma. Both types of olive oil protect LDL from oxidation. Olive oil containing phenolics, however, shows more antioxidant effect on LDL oxidation than refined olive oil.  相似文献   

2.
The phenolic composition and antioxidant activity of several monovarietal extra virgin olive oils used as blenders for the production of Collina di Brindisi protected designation of origin (PDO) oil, produced between December 2008 and January 2009 using two‐phases or three‐phases extraction system, were evaluated and compared with other manufacturer products designated as PDO. Oils were taken from the most representative ones industrial oil mills in the PDO geographical area. The parameters assessed were free acidity, peroxide value, K232 and K270 indices, organoleptic characteristics, total phenolic content (TPC), phenolic profile, and antioxidant activity coefficient (AAC). The phenolic contents and profiles of the monovarietal oils showed remarkable differences with respect to PDO oils. The variables that exerted a major influence on phenols concentration were the maturity degree of olives (December>January), followed by the extraction system (two‐phase>three‐phase), and place of growing. The Pearson r correlation index showed that AAC was positively correlated with TPC, p‐coumarate, and 3,4‐DHPEA‐EA, and negatively correlated with peroxide value. Practical applications: The results provide detailed information about: (i) the phenolic composition and the AAC of several monovarietal extra virgin olive oils used as blenders for the production of a PDO oil; (ii) the impact of genetic variability, place of growing, olive maturity degree, and extraction technology on oil phenol compounds; and (iii) the relationships among each phenolic compound and AAC, and their potential utilization as analytical index of antioxidant activity. It is important to study the phenolic compounds and antioxidant activity of monovarietal extra virgin olive oils used to produce PDO oil and to compare with the relative PDO samples in order to define a possible analytical tool able to verify what is stated in the label for consumer information and protection.  相似文献   

3.
4‐Hydroxy‐2‐trans‐nonenal (HNE) is a toxic aldehyde produced mostly in oils containing polyunsaturated fatty acid due to heat‐induced lipid peroxidation. The present study examined the effects of the heating time, the degree of unsaturation, and the antioxidant potential on the formation of HNE in two light olive oils (LOO) and two sunflower oils (one high oleic and one regular) at frying temperature. HNE concentrations in these oil samples heated for 0, 1, 3, and 5 hours at 185 °C were measured using high‐performance liquid chromatography. The fatty‐acid distribution and the antioxidant capacity of these four oils were also analyzed. The results showed that all oils had very low HNE concentrations (<0.5 μg g?1 oil) before heating. After 5 hours of heating at 185 °C, HNE concentrations were increased to 17.98, 25.00, 12.51, and 40.00 μg g?1 in the two LOO, high‐oleic sunflower oil (HOSO), and regular sunflower oil (RSO), respectively. Extending the heating time increased HNE formation in all oils tested. It is related to their fatty‐acid distributions and antioxidant capacities. RSO, which contained high levels of linoleic acid (59.60%), a precursor for HNE, was more susceptible to degradation and HNE formation than HOSO and LOO, which contained only 6–8% linoleic acid.  相似文献   

4.
Tara is a native species of Peru and is widely distributed in Latin America; its fruits (pods) have a high potential for medical, industrial and food uses. A supercritical tara polyphenol extract (STPE) was obtained from tara pods by supercritical fluid extraction (SFE) with CO2. The antioxidant activity of the STPE was studied in two oils, regular and high‐oleic sunflower oil (SO, HOSO), with and without their natural antioxidants. Under accelerated conditions of oxidation, a linear relationship was observed in antioxidant‐stripped oils between the polyphenol content of the STPE and the induction period. The antioxidant effect of STPE on the HOSO was studied at 60°C. The highest polyphenol concentration of STPE showed the greatest α‐tocopherol degradation and the lowest hydroperoxide formation, which implies that α‐tocopherol causes the regeneration of the polyphenols that protect the TAGs in HOSO. Tara pods combined with SFE method could be used as a source of antioxidants in oils.  相似文献   

5.
The use of an emulsifier to stabilize the phenolic compounds added in the preparation of an enriched olive oil was evaluated. Two emulsifiers, lecithin and monoglyceride, were studied. The results showed lecithin to be the most convenient, due to the increase in the value of the oxidative stability of the phenol‐enriched oils in relation to the enrichments prepared with monoglycerides. After that, the shelf life of the prepared oils was evaluated during a period of 256 days of storage at 25°C in the dark. Oil quality parameters, total phenolic content, bitterness index and oxidative stability were studied during the storage period. Additionally, the phenolic composition and antioxidant capacity (by using the ORAC assay) were evaluated at the end of the storage. The phenolic enrichment of the oils allowed the shelf life of the oils to be extended compared with the control (virgin olive oil without phenol addition), delaying the appearance of peroxides and improving their oxidative stability. In addition, the higher content of phenolic compounds in the oils at all stages of storage is desirable in order to increase the intake of these beneficial compounds. Practical applications : The preparation of phenol‐enriched olive oils with a higher phenolic content than the commercial virgin olive oils is of special interest to increase the ingestion of these healthy compounds the daily intake of which is limited due to the high caloric value of olive oil. There are two key points in the development of this product: (i) the dispersion and stabilization of the phenol extract in the oil matrix and (ii) the stability of the phenols in the prepared oils to guarantee the phenol concentration during their shelf life. It is important to study the use of emulsifiers to determine if they allow an improvement in the dispersion of the phenolic extract, and their stabilization in the final product. In addition, the emulsifiers could mask the bitter taste of the enriched oils, which is desirable to increase consumer acceptance of the enriched oil.  相似文献   

6.
Changes in chemical, physical and sensory parameters of high‐oleic rapeseed oil (HORO) (NATREON?) during 72 h of deep‐fat frying of potatoes were compared with those of commonly used frying oils, palm olein (PO), high‐oleic sunflower oil (HOSO) and partially hydrogenated rapeseed oil (PHRO). In addition to the sensory evaluation of the oils and the potatoes, the content of polar compounds, oligomer triacylglycerols and free fatty acids, the oxidative stability by Rancimat, the smoke point and the anisidine value were determined. French fries obtained with HORO, PO and HOSO were still suitable for human consumption after 66 h of deep‐fat frying, while French fries fried in PHRO were inedible after 30 h. During the frying period, none of the oils exceeded the limit for the amount of polar compounds, oligomer triacylglycerols and free fatty acids recommended by the German Society of Fat Science (DGF) as criteria for rejection of used frying oils. After 72 h, the smoke point of all oils was below 150 °C, and the amount of tocopherols was reduced to 5 mg/100 g for PHRO and 15 mg/100 g for HORO and HOSO. Remarkable was the decrease of the oxidative stability of HOSO measured by Rancimat. During frying, the oxidative stability of this oil was reduced from 32 h for the fresh oil to below 1 h after 72 h of frying. Only HORO showed still an oxidative stability of more than 2 h. From the results, it can be concluded that the use of HORO for deep‐fat frying is comparable to other commonly used oils.  相似文献   

7.
Stripped and non-stripped oils from Sclerocarya birrea [marula oil (SCO)], Aspongopus viduatus [melon bug oil (MBO)] and Agonoscelis pubescens [sorghum bug oil (SBO)], traditionally used for nutritional applications in Sudan, were investigated for their fatty acid and tocopherol composition, and their oxidative stability. Three stripping methods were used, phenolic compounds extraction, silicic acid column, and aluminum oxide column. The stripping methods did not affect the fatty acid composition. Non-stripped SCO, MBO and SBO contained oleic, palmitic, stearic and linoleic acids, which were not significantly (P < 0.05) different than stripped SCO, MBO and SBO. The stripping methods’ effect on the tocopherol composition of the studied oils, the total amount of tocopherol in non-stripped oils decreased by extraction of phenolic compounds, mean that part of the tocopherols was extracted with the phenolic compounds. No traces of tocopherols were found in oils stripped using silicic and aluminum columns and the tocopherols were eliminated during the stripping processes. The stability of SCO, MBO and SBO oils was 43, 38 and 5.1 h, respectively, this stability decreased by 22.0, 37.6 and 23.5%, respectively after extraction of phenolic compounds. This stability decreased by 96.9, 98.2 and 90.2% respectively, when stripped using the aluminium column and decreased by 92.6, 96.1 and 86.3% when stripped by the silicic column. It is possible to assume that the tocopherols and phenolic compounds play a more active role in the oxidative stability of the oils than the fatty acid composition and phytosterols.  相似文献   

8.
The factors influencing the oxidative stability of different commercial olive oils were evaluated. Comparisons were made of (i) the oxidative stability of commercial olive oils with that of a refined, bleached, and deodorized (RBD) olive oil, and (ii) the antioxidant activity of a mixture of phenolic compounds extracted from virgin olive oil with that of pure compounds andα-tocopherol added to RBD olive oil. The progress of oxidation at 60°C was followed by measuring both the formation (peroxide value, PV) and the decomposition (hexanal and volatiles) of hydroperoxides. The trends in antioxidant activity were different according to whether PV or hexanal were measured. Although the virgin olive oils contained higher levels of phenolic compounds than did the refined and RBD oils, their oxidative stability was significantly decreased by their high initial PV. Phenolic compounds extracted from virgin olive oils increased the oxidative stability of RBD olive oil. On the basis of PV, the phenol extract had the best antioxidant activity at 50 ppm, as gallic acid equivalents, but on the basis of hexanal formation, better antioxidant activity was observed at 100 and 200 ppm.α-Tocopherol behaved as a prooxidant at high concentrations (>250 ppm) on the basis of PV, but was more effective than the other antioxidants in inhibiting hexanal formation in RBD olive oil.o-Diphenols (caffeic acid) and, to a lesser extent, substitutedo-diphenols (ferulic and vanillic acids), showed better antioxidant activity than monophenols (p- ando-coumaric), based on both PV and hexanal formation. This study emphasizes the need to measure at least two oxidation parameters to better evaluate antioxidants and the oxidative stability of olive oils. The antioxidant effectiveness of phenolic compounds in virgin olive oils can be significantly diminished in oils if their initial PV are too high.  相似文献   

9.
In this study the antioxidant activity of absolute ethanol, 50 % ethanol and water extracts of two species of seaweeds, namely Fucus serratus and Polysiphonia fucoides, were evaluated both in in vitro assays and in 5 % fish oil‐in‐water (o/w) emulsions. The 50 % ethanolic extracts of P. fucoides showed higher antioxidant activity both in in vitro assays and in 5 % oil‐in‐water emulsion in the presence or absence of iron. In spite of the higher phenolic content and very good antioxidant activity in some of the in vitro assays, the absolute ethanol extracts of both the species showed a pro‐oxidative tendency in 5 % fish oil‐in‐water emulsion in the presence or absence of iron. In order to investigate the reason for the higher antioxidant activity of 50 % ethanolic extracts of P. fucoides, these extracts were further fractionated into polyphenol‐rich, protein‐rich, polysaccharide‐rich and low‐molecular‐weight fractions. These fractions were tested both in in vitro and in 5 % oil‐in‐water emulsions. The results of the present study showed that the main effect was due to the phenolic compounds. In conclusion, the 50 % ethanolic extracts of P. fucoides can be a potential source of natural antioxidants as these extracts have antioxidant activities similar to those of synthetic antioxidants such as BHT.  相似文献   

10.
In an effort to develop alternatives for harmful trans fats produced by partial hydrogenation of vegetable oils, oleogels of high‐stearic soybean (A6 and MM106) oils were prepared with sunflower wax (SW) as the oleogelator. Oleogels of high‐stearic oils did not have greater firmness when compared to regular soybean oil (SBO) at room temperature. However, the firmness of high‐stearic oil oleogels at 4 °C sharply increased due to the high content of stearic acid. High‐stearic acid SBO had more polar compounds than the regular SBO. Polar compounds in oil inversely affected the firmness of oleogels. Differential scanning calorimetry showed that wax crystals facilitated nucleation of solid fats of high‐stearic oils during cooling. Polar compounds did not affect the melting and crystallization behavior of wax. Solid fat content (SFC) showed that polar compounds in oil and wax interfered with crystallization of solid fats. Linear viscoelastic properties of 7% SW oleogels of three oils reflected well the SFC values while they did not correlate well with the firmness of oleogels. Phase‐contrast microscopy showed that the wax crystal morphology was slightly influenced by solid fats in the high‐steric SBO, A6.  相似文献   

11.
Phosphonates were synthesized on a medium scale (~200 g) from three lipids—methyl linoleate (MeLin), high‐oleic sunflower oil (HOSO) and soybean oil (SBO), and three dialkyl phosphites—methyl, ethyl and n‐butyl, using a radical initiator. A staged addition of the lipid and the initiator was used to achieve good yields. Good results were observed with MeLin (94–99% conversions of the double bonds, as determined by NMR, and 83–99% isolated yields) and HOSO (99–100% NMR conversions, 87–96% isolated yields) using tert‐butyl perbenzoate as the initiator. With SBO, benzoyl peroxide was used as the initiator, due to its capability to generate radicals at a higher rate at slightly lower temperatures, and thus to shorten the reaction time. Conversions of 91–93% (by NMR) and isolated yields of 80–94% were achieved. The progress of the reaction was monitored with GC–MS. The products were characterized using 1H, 13C and 31P NMR, IR and gel permeation chromatography. A prolonged reaction led to some transesterification between the carboxylic and phosphite ester groups. Conditions favoring higher reaction rates led to the formation of more oligomers and benzoate fatty ester byproducts. The benzoate fatty ester byproducts were formed by the attack of a benzoate radical on a double bond. The more double bonds that were present per lipid molecule, the more oligomers were formed: MeLin 2–8%, HOSO 3–9% and SBO 8–29%.  相似文献   

12.
Frying of frozen foods has become popular because it considerably reduces cooking time. Polymers and cyclic fatty acid monomers (CFAM) formed during frying are potentially toxic and therefore their production should be minimized. Twenty discontinuous fryings of different frozen foods were carried out over ten consecutive days, in sunflower oil (SO) and in high‐oleic acid sunflower oil (HOSO), by adding fresh oil after each frying to bring the volume of the fryer oil back to 3 L. CFAM methyl ester derivates were hydrogenated, isolated, concentrated and quantified by HPLC using a reverse‐phase column, followed by gas chromatography. After 20 fryings, significantly higher contents of polar material, polymers and CFAM (all p <0.001) were found in SO than in HOSO. Bicyclic compound formation was four times higher in SO (p <0.001). The fat from the fried potatoes presented a polymer content very similar to that of their corresponding oils. The 100‐g rations of the SO‐fried potatoes from the 20th frying supply 49 or 15%, respectively, more polymers and CFAM and 1 mg more bicyclic fatty acids than the 100‐g rations of HOSO‐fried potatoes. Because digestion and absorption of polar material, polymers and CFAM occur, the data clearly show the advantageousness and advisability of frying with HOSO rather than SO.  相似文献   

13.
The effect of ethanol and acetone extracts obtained from Greek sage (Salvia fruticosa) and summer savory (Satureja hortensis L.) on the thermal stability of vegetable oils heated at frying temperature (180 °C) was studied. Virgin olive oil (VOO), refined olive oil (ROO), sunflower oil (SO), and a commercial oil blend suitable for frying (BL), enriched with each extract obtained from the two plant materials at a concentration of 3 g/kg oil, were heated at 180 °C for 10 h. Changes during heating were assessed by quantification of total polar materials and determination of p‐anisidine values. The acetone extract obtained from Greek sage showed a better inhibitory effect against thermal oxidation of heated refined oils (BL, ROO, SO) than the respective ethanol extract, although the latter was found to have a relatively higher total phenol content. Both summer savory extracts effectively retarded the thermal oxidation reactions during oil heating, showing a more pronounced effect than the Greek sage acetone extract. The activity of the acetone extract obtained from summer savory was stronger (SO, BL) or similar (ROO, VOO) to that of the summer savory ethanol extract, although the latter was found to have a higher total phenol content.  相似文献   

14.
Antioxidant properties of mono‐ and dihydroxyphenolic acids and their alkyl esters were examined, with emphasis on the relationship between their molecular structure and antioxidant activity. Test media with different tocopherol level were used for determining the oxidative stability: original refined sunflower oil (total tocopherols 149.0 mg/kg), partially tocopherol‐stripped sunflower oil (total tocopherols 8.7 mg/kg) and distilled fatty acid methyl esters (FAME) as a tocopherol‐free medium. The chemical reaction of tocopherols with diazomethane tested for the purpose to eliminate their antioxidant activity failed due to the negligible degree of methylation of hydroxyl group in the tocopherol molecule. Caffeic acid and protocatechuic acid (3,4‐dihydroxyphenolic acids) and their alkyl esters were found to be more active antioxidants than monohydroxyphenolic acid (p‐hydroxybenzoic acid), 2,5‐dihydroxyphenolic acid (gentisic acid), 3‐methoxy‐4‐hydroxyphenolic acids (vanillic and ferulic acids) and their corresponding alkyl esters. Naturally present tocopherols in refined sunflower oil proved to have a synergistic effect on gentisic acid but not on its alkyl esters. In contrast, tocopherols showed an antagonistic effect on alkyl esters of caffeic acid, because their protection factors decreased with increasing level of tocopherols in the test medium. Moreover, the antioxidant activity of these alkyl esters decreased with increasing length of their alkyl chain in conformity with the polar paradox hypothesis. Practical applications: Tocopherols as naturally present antioxidants influence considerably the antioxidant activity of other antioxidants added to plant oils used as a test medium. Distilled fatty acid methyl esters prepared from refined sunflower oil may serve as an optimal tocopherol‐free test medium. Some alkyl esters of phenolic acids were evaluated to be applicable as natural more lipophilic antioxidants in comparison with phenolic acids.  相似文献   

15.
The aim of the research was to characterize bioactive components of unsaponifiable fraction of selected unconventional oils. Nine oils were analyzed as far as the content of tocopherols, squalene, phenolic compounds, and sterols were concerned. Tocopherols and squalene were analyzed by HPLC coupled with diode array detector and fluorescent detector (HPLC‐DAD‐FLD). The content of sterols in oils was determined by GC coupled with MS (GC‐MS). The total amount of phenolic compounds in oils was determined by the colorimetric methods using Folin–Ciocalteau phenol reagent. The examined oils were characterized by differentiated amount of particular forms of tocopherols. The oil obtained from the seeds of amaranth was the richest source of squalene (over 52 mg/g oil). The presence of 22 different compounds of sterols were identified, whereas β‐sitosterol was found in the largest amount. Total amount of sterols in the oils ranged from 90 (walnut) to 850 mg/100 g (evening primrose). Significant differentiation of total amount of phenolic compounds was observed in the examined oils. Evening primrose oil showed the highest amount of phenolic compounds (679 mg/kg). The presented results prove that plant oils obtained from nonconventional sources are a potential source of bioactive compounds.  相似文献   

16.
The main objective of this study was to evaluate the effect of different deficit irrigation treatments (control, regulated deficit irrigation [RDI]‐1, RDI‐2, and RDI‐3) on the phenolic profile of the olive paste and oil content. Irrigation treatments with more stress water led to a considerable increase in the phenolic compounds of olive paste, especially in oleuropein (60.24%), hydroxytyrosol (82%), tyrosol (195%), and verbascoside (223%) compared to control. A significant increase in the content of total flavonoids and phenolic acids was also observed for these samples. In virgin olive oils (VOO) elaborated from the most stressed olive trees (RDI‐2 and RDI‐3), a noticeable increase in phenolic substances with antioxidant properties (oleuropein, hydroxytyrosol, tyrosol, secoiridoid derivatives, and o‐vanillin) was observed. Consequently, water stress conditions improved antioxidant activity of VOO.  相似文献   

17.
Chemical properties, fatty acid and sterol compositions of olive oils extracted from Gemlik and Halhal? varieties grown in Hatay and Mardin provinces in Turkey were investigated during four maturation stages. The olive oil samples were analyzed for their chemical properties such as free acidity, peroxide value, total carotenoid, total chlorophyll, total phenolic contents, antioxidant activity, fatty acid and sterol compositions. Chemical properties, fatty acids and sterol profiles of olive oil samples generally showed statistically significant differences depending on the varieties, maturation and growing areas (p < 0.05). As free fatty acid contents and total phenolic contents increased, total carotenoid and chlorophyll contents decreased throughout the maturity stages. Total carotenoid and chlorophyll contents of oil samples from Mardin were higher than those of Hatay. The total phenolic compounds of olive oil samples ranged from 20.62 in Gemlik to 525.22 mg GAE/kg oil in Halhal? from Hatay. In general, the phenolic contents and antioxidant activities of olive oil samples were positively associated. Oleic acid content was the highest 71.53 % in H1 samples in Hatay. Total sterol contents were 1194.33 mg/kg in Halhal? and 2008.66 mg/kg in Gemlik from Hatay. Stigmasterol contents of oils obtained from Hatay were lower than those of Mardin. Oleic acid, palmitic acid, β‐sitosterol, ?‐5‐avenasterol and campesterol contents fluctuated with maturation for each of variety from both growing regions. These results showed that the variety, growing area and maturation influence the chemical properties, fatty acid and sterol compositions.  相似文献   

18.
The effect of extraction systems on the phenolic composition of virgin olive oils obtained from two different Italian cultivars (Coratina and Oliarola) was determined. The oils extracted using two-phase centrifugation showed in all cases higher phenolic concentration in comparison to oils obtained from three-phase centrifugation. In particular, the highest differences were observed for aglykone derivatives of oleuropein (3,4-DHPEA-EDA and 3,4-DHPEA-EA) that are the most concentrated antioxidant phenolic compounds of virgin olive oil. These results were confirmed by the autoxidation stability of the oils examined.  相似文献   

19.
Phenolic compound distribution of Turkish olive cultivars and their matching olive oils together with the influence of growing region were investigated. One hundred and one samples of olives from 18 cultivars were collected during two crop years from west, south and south‐east regions of Turkey. The olives were processed to oils and both olive and olive oil samples were evaluated for their phenolic compound distribution. The results have shown that main phenolics of Turkish olives were tyrosol, oleuropein, p‐coumaric acid, verbascoside, luteolin 7‐O‐glucoside, rutin, trans cinnamic acid, luteolin, apigenin, cyanidin 3‐O‐glucoside and cyanidin 3‐O‐rutinoside. Oleuropein and trans cinnamic acid were present in higher amounts among all phenolics. Principal component analyses showed that the growing region did not have drastic effect on phenolic profile of olives. The major phenolic compounds of olive oils were tyrosol, syringic acid, p‐coumaric acid, luteolin‐7‐O‐glucoside, trans cinnamic acid, luteolin and apigenin. Luteolin is a predominant phenolic compound in almost all oil samples. Total phenol concentrations of Southeast Anatolian oils were found to be lower than those of the other regions.  相似文献   

20.
Micronutrients (tocols, sterols, and total phenolic) and antioxidant activities of 15 varieties of common vegetable oil samples obtained from different countries are investigated. All methanol extracts are assayed for total antioxidant ability and cellular antioxidant activity (CAA) using oxygen radical absorbance capacity (ORAC) method and CAA assay. CAA has been widely used in the evaluation of food antioxidants recently. It quantifies antioxidant capacity utilizing a HepG2 cell model, which is more biologically representative. Linseed and sesame oils show much higher CAA values than the others tested; however, levels of walnut, sunflower, and coconut oils are extremely low, which are hard to be quantified. A significant correlation between the ORAC and CAA values and total phenolic content (p < 0.05) is observed. High‐phenolic olive oil has the highest level of phenolics and the highest ORAC, while linseed oil has the highest CAA value. Based on this, choosing proper edible oil consumption may reduce oxidative damage of human body and promote the precision processing of edible oil such as retaining beneficial ingredients moderately. Practical Application: This study demonstrates the evaluation of the universality of vegetable oils by the cellular antioxidant model and provides a data reference for the selection of edible oils with excellent antioxidant properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号