首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Internally buffered multistage interconnection network architectures have been widely used in parallel computer systems and large switching fabrics. Migration from electrical domain to optical domain has raised the necessity of developing node architectures with optical buffers. Cascaded fibre delay line architectures can be seen as possible realizations of output and shared buffering in a 2 × 2‐switching element. These approaches can be used as buffered node architecture in a Banyan like interconnect. In this paper, we investigate and compare these approaches by using simulation methods. Different performance metrics, such as normalized throughput, average packet delay, packet loss rate and buffer utilization have been used under uniform and non‐uniform traffic models. Results show that the TC‐chain node Banyan network offer an improved normalized throughput and average packet delay performances under both traffic models without disrupting first‐in‐first‐out order of arrivals. The switched delay‐line requires fewer switching elements than TC and TTC architectures but at the cost of high packet delay. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
Given a video/audio streaming system installed on a multichannel multiradio wireless mesh network, we are interested in a problem concerning about how to construct a delay‐constrained multicast tree to support concurrent interference‐free transmissions so that the number of serviced mesh clients is maximized. In this paper, we propose a heuristic approach called cross‐layer and load‐oriented (CLLO) algorithm for the problem. On the basis of the cross‐layer design paradigm, our CLLO algorithm can consider application demands, multicast routing, and channel assignment jointly during the formation of a channel‐allocated multicast tree. The experimental results show that the proposed CLLO outperforms the layered approaches in terms of the number of serviced mesh clients and throughputs. This superiority is due to information from higher layers can be used to guide routing selection and channel allocation at the same time. As a result, the CLLO algorithm can explore more solution spaces than the traditional layered approaches. In addition to that, we also propose a channel adjusting procedure to enhance the quality of channel‐allocated multicast trees. According to our simulations, it is proved to be an effective method for improving the performance of the proposed CLLO algorithm. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, an analytical model is proposed to calculate the network throughput of dedicated control channel protocols that are designed to schedule multiple packets to be transmitted on different data channels simultaneously. Based on the analytical model, a scheme by tuning the initial contention window size is proposed to maximize the network throughput. We also present a novel multi‐channel MAC protocol for single‐hop scenario. Simulation results show that the proposed model is capable of modeling the behaviors of dedicated control channel protocols accurately. Furthermore, the proposed scheme can reduce the cost of collisions and enhance the network throughput up to 22% for 1 kB packet size and 80 nodes. Compared with other dedicated control channel protocols, the proposed protocol can schedule more control packets and use multiple channels more efficiently. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
A major challenge in asynchronous packet‐based optical networks is packet contention, which occurs when two or more packets head to the same output at the same time. To resolve contention in the optical domain, two primary approaches are wavelength conversion and fiber delay line (FDL) buffering. In wavelength conversion, a contending packet can be converted from one wavelength to another in order to avoid conflict. In FDL buffering, contending packets can be delayed for a fixed amount of time. While the performance of wavelength conversion and FDL buffering has been evaluated extensively in synchronous networks with fixed‐sized packets, in this paper, we study the performance of FDL buffers in asynchronous packet‐based optical networks with wavelength conversion. An analytical model is proposed to evaluate the performance in terms of packet loss probability and average delay. Extensive simulation and analytical results show that, with appropriate settings, FDL buffers can perform much better in switches with wavelength conversion than in switches with no conversion. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
We investigate how multi‐hop routing affects the goodput and throughput performances of IEEE 802.11 distributed coordination function‐based wireless networks compared with direct transmission (single hopping), when medium access control dynamics such as carrier sensing, collisions, retransmissions, and exponential backoff are taken into account under hidden terminal presence. We propose a semi‐Markov chain‐based goodput and throughput model for IEEE 802.11‐based wireless networks, which works accurately with both multi‐hopping and single hopping for different network topologies and over a large range of traffic loads. Results show that, under light traffic, there is little benefit of parallel transmissions and both single‐hop and multi‐hop routing achieve the same end‐to‐end goodput. Under moderate traffic, concurrent transmissions are favorable as multi‐hopping improves the goodput up to 730% with respect to single hopping for dense networks. At heavy traffic, multi‐hopping becomes unstable because of increased packet collisions and network congestion, and single‐hopping achieves higher network layer goodput compared with multi‐hop routing. As for the link layer throughput is concerned, multi‐hopping increases throughput 75 times for large networks, whereas single hopping may become advantageous for small networks. The results point out that the end‐to‐end goodput can be improved by adaptively switching between single hopping and multi‐hopping according to the traffic load and topology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
How to evaluate the performance of satellite networks is a prerequisite to the construction of satellite networks, and is also one of challenges in the researches on satellite networks. In this paper, generalized stochastic Petri net (GSPN) models are presented to carry out the performance analysis of a double‐layered satellite network. Firstly, the GSPN model of a double‐layered satellite network is simplified by proper analysis. Then, two sets of experiments are conducted to analyse the performance of the satellite networks, and show that the double‐layered satellite network outperforms single‐layered ones on the heavy traffic load. Finally, the feasibility and effectiveness of the proposed approach is verified by simulation experiments. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
This paper addresses the performance evaluation of adaptive routing algorithms in non‐geostationary packet‐switched satellite communication systems. The dynamic topology of satellite networks and variable traffic load in satellite coverage areas, due to the motion of satellites in their orbit planes, pose stringent requirements to routing algorithms. We have limited the scope of our interest to routing in the intersatellite link (ISL) segment. In order to analyse the applicability of different routing algorithms used in terrestrial networks, and to evaluate the performance of new algorithms designed for satellite networks, we have built a simulation model of a satellite communication system with intersatellite links. In the paper, we present simulation results considering a network‐uniform source/destination distribution model and a uniform source–destination traffic flow, thus showing the inherent routing characteristics of a selected Celestri‐like LEO satellite constellation. The updates of the routing tables are centrally calculated according to the Dijkstra shortest path algorithm. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents the performance evaluation of a new cell‐based multicast switch for broadband communications. Using distributed control and a modular design, the balanced gamma (BG) switch features high performance for unicast, multicast and combined traffic under both random and bursty conditions. Although it has buffers on input and output ports, the multicast BG switch follows predominantly an output‐buffered architecture. The performance is evaluated under uniform and non‐uniform traffic conditions in terms of cell loss ratio and cell delay. An analytical model is presented to analyse the performance of the multicast BG switch under multicast random traffic and used to verify simulation results. The delay performance under multicast bursty traffic is compared with those from an ideal pure output‐buffered multicast switch to demonstrate how close its performance is to that of the ideal but impractical switch. Performance comparisons with other published switches are also studied through simulation for non‐uniform and bursty traffic. It is shown that the multicast BG switch achieves a performance close to that of the ideal switch while keeping hardware complexity reasonable. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, we propose a Load‐Balancing and Coding‐Aware Multicast (LCM) protocol for mobile ad hoc networks. In LCM protocol, a new route metric named Expected Transmission Time with Coding and Load Balancing (ETTCL) is presented at first, aiming at effectively selecting the path not only that has the possible coding opportunity but also where overflow due to network overload can be prevented. Then, we describe the route discovery phase by constructing the node‐disjoint multicast tree on the basis of ETTCL and employ network coding to encode the data flows for route maintenance. The effectiveness of LCM protocol is simulated and analyzed by NS‐2, which shows that this protocol has good performance in reducing average end‐to‐end delay and control overhead and can improve packet delivery ratio compared with the existing protocol. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
The management of small cell is considered a key point in next‐generation cellular networks for providing higher data rates, and the relay nodes are expected to be useful to improve the coverage area. Moreover, multicast services have gained importance to disseminate common data to subscribers. The use of buffer‐aided relay for multicast communications is analysed in the paper, and different policies to perform the optimal link selections are compared. These policies are based on the knowledge of the instantaneous link quality indicators as well as the status of the relay buffer and dynamically select the better link according to a suitable probabilistic criterion by improving the aggregate multicast flows. The parameters of these multicast policies are optimized via a Markov chain theoretical framework. The performance for all the proposed methods is analytically derived and validated through computer simulations conducted in different multicast scenarios. The advantages of the proposed schemes are pointed out in terms of multicast throughput, buffer occupancy for different buffer and multicast group size. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Wireless packet ad hoc networks are characterized by multi‐hop wireless connectivity and limited bandwidth competed among neighboring nodes. In this paper, we investigate and evaluate the performance of several prevalent TCP algorithms in this kind of network over the wireless LAN standard IEEE 802.11 MAC layer. After extensively comparing the existing TCP versions (including Tahoe, Reno, New Reno, Sack and Vegas) in simulations, we show that, in most cases, the Vegas version works best. We reveal the reason why other TCP versions perform worse than Vegas and show a method to avoid this by tuning a TCP parameter— maximum window size. Furthermore, we investigate the performance of these TCP algorithms when they run with the delayed acknowledgment (DA) option defined in IETF RFC 1122, which allows the TCP receiver to transmit an ACK for every two incoming packets. We show that the TCP connection can gain 15 to 32 per cent good‐put improvement by using the DA option. For all the TCP versions investigated in this work, the simulation results show that with the maximum window size set at approximately 4, TCP connections perform best and then all these TCP variants differ little in performance. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
In this article, performance of delay‐sensitive traffic in multi‐layered satellite Internet Protocol (IP) networks with on‐board processing (OBP) capability is investigated. With OBP, a satellite can process the received data, and according to the nature of application, it can decide on the transmission properties. First, we present a concise overview of relevant aspects of satellite networks to delay‐sensitive traffic and routing. Then, in order to improve the system performance for delay‐sensitive traffic, specifically Voice over Internet Protocol (VoIP), a novel adaptive routing mechanism in two‐layered satellite network considering the network's real‐time information is introduced and evaluated. Adaptive Routing Protocol for Quality of Service (ARPQ) utilizes OBP and avoids congestion by distributing traffic load between medium‐Earth orbit and low‐Earth orbit layers. We utilize a prioritized queueing policy to satisfy quality‐of‐service (QoS) requirements of delay‐sensitive applications while evading non‐real‐time traffic suffer low performance level. The simulation results verify that multi‐layered satellite networks with OBP capabilities and QoS mechanisms are essential for feasibility of packet‐based high‐quality delay‐sensitive services which are expected to be the vital components of next‐generation communications networks. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, we study the performance of a training‐based least square (LS) and linear minimum mean‐square‐error (LMMSE) channel estimation for both hop‐by‐hop and multi‐hop direct forwarding wireless sensor networks over frequency‐selective fading channels. Specifically, to investigate the properties of the channel estimation, we accomplish a theoretical analysis of MSE in terms of various link parameters. From the performance evaluation, we analytically present the effects of the number of hops on the MSE performance for channel estimations in both multi‐hop networks. Interesting observations of MSE behaviors under various conditions are discussed, and the receiver complexity and channel equalization performance are also analyzed. Finally, through the computer simulations, the analytical results and detection performance are demonstrated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
There are two major difficulties in real‐time multicast connection setup. One is the design of an efficient distributed routing algorithm which optimizes the network cost of routing trees under the real‐time constraints. The other is the integration of routing with admission control into one single phase of operations. This paper presents a real‐time multicast connection setup mechanism, which integrates multicast routing with real‐time admission control. The proposed mechanism performs the real‐time admission tests on a cost optimal tree (COT) and a shortest path tree (SPT) in parallel, aiming at optimizing network cost of the routing tree under real‐time constraints. It has the following important features: (1) it is fully distributed; (2) it achieves sub‐optimal network cost of routing trees; (3) it takes less time and less network messages for a connection setup. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents a study of a cross‐layer design through joint optimization of spectrum allocation and power control for cognitive radio networks (CRNs). The spectrum of interest is divided into independent channels licensed to a set of primary users (PUs). The secondary users are activated only if the transmissions do not cause excessive interference to PUs. In particular, this paper studies the downlink channel assignment and power control in a CRN with the coexistence of PUs and secondary users. The objective was to maximize the total throughput of a CRN. A mathematical model is presented and subsequently formulated as a binary integer programming problem, which belongs to the class of non‐deterministic polynomial‐time hard problems. Subsequently, we develop a distributed algorithm to obtain sub‐optimal results with lower computational complexity. The distributed algorithm iteratively improves the network throughput, which consists of several modules including maximum power calculation, excluded channel sets recording, base station throughput estimation, base station sorting, and channel usage implementation. Through investigating the impacts of the different parameters, simulation results demonstrates that the distributed algorithm can achieve a better performance than two other schemes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Recently both ITU and IEEE have standardized solutions for passive optical networks (PONs) operating at gigabit per second line rates and optimized for the transport of packet‐based traffic to improve the efficiency of previously standardized broadband PONs, which used the ATM cell as the data transport unit. The efficiency and performance of PON systems depend on the transmission convergence layer and mainly on the implemented medium access protocol. Although the latter is not part of the standards and left to the implementer, the standards describe a set of control fields that constitute the tool‐set for the media access control (MAC) operation. Though starting from a common and quite obvious basis, the two standards present significant differences with the legacy of Ethernet marking the IEEE approach, while the emphasis of ITU is on demanding services. In this paper we compare the efficiency and performance of the two systems assuming the implementation of as close as possible MAC protocols. The target is twofold: assess and compare the traffic handling potential of each of the two standards and identify the range of applications they can support. Useful insight can also be gained to the MAC tools that could be designed into the next generation extra large WDM PONs. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Given a sparse‐splitting wavelength‐division multiplexing network with no wavelength converter, we study a group multicast problem that is how to transmit a number of multicast streams from the video server to multiple destinations simultaneously. To avoid the situation that the wavelengths are used up by the first few requests, one wavelength is available for each multicast request. Hence, some of destinations may not be included in the multicast trees because of the lack of wavelengths. Our goal is to construct a number of light trees with conflict‐free wavelengths for multiple requests so that the number of served clients is maximized. This problem is named as the revenue‐maximized and delay‐constrained group multicast routing problem. We first determine a set of multicast trees with the maximum number of served clients, then followed by the wavelength assignment to allocate the minimum number of wavelengths to the resulting trees. In this study, we propose two Integer Linear Programming ILP‐based algorithms for determining the optimal solutions for the light‐tree construction problem and the wavelength assignment problem, respectively. For large‐scale networks, two heuristics are introduced to solve the light‐tree construction problem approximately. A set of simulations are also provided for comparing performances of our algorithms against the other published methods. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, we investigate the performance of a cross‐layer (physical and MAC) design for multiple‐input multiple‐output (MIMO) system that aims at maximizing the throughput of ad hoc networks by selecting the optimum antenna combination. Employing this cross‐layer design is shown to improve the overall network performance relative to the case where no antenna selection (AS) is used. To solve the node blocking problem associated with the IEEE 802.11 medium‐access control (MAC) protocol, the proposed protocol leverage the available degrees of freedom offered by the MIMO system to allow neighboring nodes to simultaneously communicate using the zero‐forcing (ZF) Bell‐labs layered space‐time (BLAST) architecture. Using the cross‐layer design, neighboring nodes share their optimum antenna selection (AS) information through control messages. Given this shared information, nodes set their decisions on the number of selected antennas based on the available spatial channels that guarantees collision‐free transmissions. At the destination node, the ZF receiver is employed to extract the desired user data while treating the data from neighboring users as interference. The performance of the proposed cross‐layer design is examined through simulations, where we show that the network throughput is significantly improved compared to conventional MAC protocols. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, we propose an optimization of MAC protocol design for wireless sensor networks, that accounts for cross‐layering information, in terms of location accuracy for nodes and residual energy levels. In our proposed solution we encode this cross‐layer information within a decreasing backoff function in the MAC. The protocol is optimized by appropriately selecting priority window lengths, and we have shown that accurate cross‐layer information plays a crucial role in achieving an optimal performance at the MAC layer level. The estimation accuracy can be characterized spatially using a location reliability probability distribution function. We show that this distribution function greatly influences the design of the optimal backoff window parameters, and the overall throughput performance of the MAC protocol. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
A major challenge in packet‐based optical networks is packet contention, which occurs when two or more packets are heading to the same output at the same time. To resolve contention in the optical domain, a fundamental approach is fiber delay‐line (FDL) buffering, in which packets can be delayed for a fixed amount of time. In the literature, the performance of FDL buffering has been studied extensively. However, most existing works are based on an assumption that there is only one fiber per link in the network. In this paper, we address the architecture and performance of FDL buffers in packet‐based asynchronous multifiber optical networks (PAMFONET), in which each link in the network may consist of multiple optical fibers. We propose a framework for FDL buffers in PAMFONET, in which we provide three essential architectures and corresponding packet scheduling policies. Extensive simulation results show that, with appropriate settings, the same number of FDLs can lead to better performance in multifiber networks than in single‐fiber networks. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号