首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The miscibility between a hydrolyzed silane coupling agent, which had chemically nonreactive organofunctional groups such as propyl groups, and a film‐forming polymer [poly(vinyl acetate) PVAc] and its effect on silanol condensation were studied. A mixture consisting of a silane hydrolyzate and PVAc obtained from an alcoholic aqueous solution was investigated with Fourier transform infrared spectroscopy and size exclusion chromatography. Hydrogen bonding between the SiOH groups of the silane and the C?O groups of PVAc and silanol condensation affected by PVAc were examined. The hydrogen bonding and condensation reaction were influenced by the miscibility between the organofunctional group of the silane and PVAc. The miscibility of each system was estimated from the calculated Hildebrand solubility parameter of the organofunctional group. A correlation between the miscibility and the integrated absorbance of the hydrogen‐bonded C?O, obtained by least‐squares curve fitting, was established. On the basis of the molecular weight of the silane and the number of hydrogen‐bonded C?O groups, a micellelike phase was proposed. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 589–598, 2003  相似文献   

2.
Cardanol‐based, novolac‐type phenolic resins were synthesized with a cardanol‐to‐formaldehyde molar ratio of 1 : 0.7 with different dicarboxylic acid catalysts, including oxalic and succinic acids. These novolac resins were epoxidized with a molar excess of epichlorohydrin at 120°C in a basic medium. The epoxidized novolac resins were separately blended with different weight ratios of carboxyl‐terminated butadiene–acrylonitrile copolymer (CTBN) ranging between 0 and 20 wt % with an interval of 5 wt %. All of the blends were cured at 120°C with a stoichiometric amount of polyamine. The formation of various products during the synthesis of the cardanol‐based novolac resin and epoxidized novolac resin and the blending of the epoxidized novolac resin with CTBN was studied by Fourier transform infrared spectroscopy analysis. Furthermore, the products were also confirmed by proton nuclear magnetic resonance and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectroscopy analysis. The molecular weights of the prepared novolacs and their epoxidized novolac resins were determined by gel permeation chromatography analysis. The blend samples, in both cases, with 15 wt % CTBN concentrations showed the minimum cure times. These blend samples were also the most thermally stable systems. The blend morphology, studied by scanning electron microscopy analysis, was, finally, correlated with the structural and property changes in the blends. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
With the aim of selecting a precursor of a polyhedral oligomeric silsesquioxane (POSS) reacted with aromatic diamines for its incorporation into an epoxy network, to generate an organic–inorganic hybrid material containing POSS, a polyhedral oligomeric silsesquioxane (glycidylisobutyl–POSS) was reacted with the diamines 4,4′‐methylenebis(2,6‐diethylaniline) (MDEA), 4,4′‐diaminediphenylmethane (DDM), and 4,4′‐(1,3‐phenylenediisopropylidene)bisaniline (BSA), at 160°C and different times, in a proportion rich in amines. The distribution of species in the reaction was followed by gel permeation chromatography (GPC). From the experimental data obtained the selected precursor was POSS/BSA reacted at 160°C for 20 or 30 min, to ensure that all the POSS was reacted, that there was a maximum of the monosubstituted amines, and that there was no degradation. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1576–1583, 2004  相似文献   

4.
Crosslinked styrene‐butadiene and butadiene rubbers can efficiently be analyzed by liquid chromatography and FT‐IR spectroscopy. In a first step the vulcanizate is pyrolyzed under mild conditions. The resulting high molar mass fragments are extracted from the bulk material and analyzed by size exclusion chromatography. The molar masses of the extractables are in the range of 3 000 to 25 000 g/mol. The chemical composition as a function of molar mass is visualized by coupled SEC‐FT‐IR spectroscopy. By quantitative analysis of the FT‐IR spectra the concentrations of the different structural units, including styrene, 1,4‐trans‐butadiene, 1,2‐vinylbutadiene, and 1,4‐cis‐butadiene, are determined. It is shown that the chemical composition of the original non‐crosslinked rubbers and the chemical composition of the extractables are rather identical. Therefore, this technique can be used to obtain structural information on rubber formulations even in the case when the material is already vulcanized.

SEC chromatograms of SBR 1712 and the extractables after pyrolysis, stationary phase: SDV linear, mobile phase: THF, detector: ELSD.  相似文献   


5.
We carried out deconvolution of the molecular weight distribution curves from gel permeation chromatography for polyolefins into individual active sites considering Flory distribution by an evolutionary‐computing‐based real‐coded genetic algorithm, a nonlinear multivariate optimization algorithm. We applied the deconvolution to homopolymers of 1‐octene synthesized using heterogeneous Ziegler–Natta catalysts with different amounts of hydrogen. The molecular weight distribution was deconvoluted in to five Flory distributions, which showed a sensitivity to hydrogen amounts. With no hydrogen presence, the peaks corresponding to high‐molecular‐weight fractions were intense. As the amount of hydrogen was increased, not only did the intensities of the high‐molecular‐weight peaks decrease, but also peaks corresponding to low‐molecular‐weight fractions were observed. The method allowed us to determine the active site distribution of the polymer molecular weight distribution obtained from gel permeation chromatography. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
Epoxy resins are among the most versatile engineering structural materials. A wide variety of epoxy resins are commercially available, but most are brittle. Several approaches have been used to improve the toughness of epoxy resins, including the addition of fillers, rubber particles, thermoplastics, and their hybrids, as well as interpenetrating polymer networks (IPNs) of acrylic, polyurethane, and flexibilizers such as polyols. This last approach has not received much attention; none of them have been able to suitably increase resin toughness with out sacrificing tensile properties. Therefore, in an attempt to fill this gap, we experimented with newly synthesized hydroxy‐terminated silicon‐modified polyurethane (SiMPU) oligomers as toughening agents for epoxy resins. SiMPU oligomers were synthesized from dimethyl dichlorosilane, poly(ethylene glycol) (weight‐average molecular weight ~ 200), and toluene 2,4‐diisocyanate and characterized with IR, 1H‐NMR and 13C‐NMR, and gel permeation chromatography. The synthesized SiMPU oligomers, with different concentrations, formed IPNs within the epoxy resins (diglycidyl ether of bisphenol A). The resultant IPN products were cured with diaminodiphenyl sulfone, diaminodiphenyl ether, and a Ciba–Geigy hardener under various curing conditions. Various mechanical properties, including the lap‐shear, peel, and impact strength, were evaluated. The results showed that 15 phr SiMPU led to better impact strength of epoxy resins than the others without the deterioration of the tensile properties. The impact strength increased continuously and reached a maximum value (five times greater than that of the virgin resin) at a critical modifier concentration (20 phr). The critical stress intensity factor reached 3.0 MPa m1/2 (it was only 0.95 MPa m1/2 for the virgin resin). © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1497–1506, 2003  相似文献   

7.
Allyl ether (AE)‐modified unsaturated polyester oligomers were synthesized from polyethylene glycol (PEG), maleic anhydride (MAH), and trimethylolpropane mono allyl ether (TMPAE), and characterized by Fourier transform infrared (FTIR) spectra. The UV/air dual‐curable coatings were prepared from the oligomers using vinyl ether (VE) as a reactive diluent. FTIR spectra showed that C?C bonds in the coating composition had polymerized partially after cured by UV or air. The investigation of rheological behavior of the dual curable composition suggested that all the systems belonged to pseudoplastic fluid, and the increasing allyloxy content in oligomer resulted in a higher viscosity. Differential scanning calorimetry (DSC) analysis showed that the increasing TMPAE‐PEG molar ratio resulted in lower Tg, and all samples had the same glass transition temperature irrespective of the type of curing. The results of TGA for cured films indicated that UV‐cured film had better thermal stability than the air‐cured one. The air‐cured film showed superior pencil hardness, impact strength, and flexibility to the UV‐cured counterpart. However, the air‐cured film had poor adhesion and electric resistance properties. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2765–2770, 2004  相似文献   

8.
Hybrid lacquers that dry quickly in a low‐relative‐humidity environment were synthesized with the repeated kurome lacquer process and an organic silicone compound. An investigation by gel permeation chromatography showed that fractions with different molecular weights showed a lower monomer concentration than the pure kurome lacquer. Fourier transform infrared spectra of the hybrid lacquers revealed that absorption due to the ether of the quinone olefin and/or dibenzofuran appeared around 1470 and 1080 cm?1 and increased with the number of drying days. The gel fractions in the lacquer films increased according to the number of drying days, and this showed that the hybrid lacquers had higher gel fractions than the pure kurome lacquer in the initial stage of dryness. In addition, the drying mechanism of the hybrid lacquers was analyzed with an automatic drying time recorder and rigid‐body pendulum physical property testing measurements. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1055–1061, 2005  相似文献   

9.
In an effort to prepare a novel novolac phenol (NP) based char former with good solubility, the hydroxyl functionalities of NP were blocked with phenyl isocyanate (PI) via a simple urethane‐forming reaction. The chemical structure and properties of the obtained novolac phenol–phenyl isocyanate adduct (NP–PI) were characterized with gel permeation chromatography, Fourier transform infrared spectroscopy, 1H‐NMR, and differential scanning calorimetry. Adducts of two kinds of NPs (molecular weights = 450 and 800) with PI were used as potential char formers for this study. Thus, a two‐component system using NP–PI as a char former and triphenyl phosphate (TPP) as a phosphorous‐based flame retardant was blended with ABS, and the thermal degradation behavior and flame retardance were examined as a function of the molar mass of NP–PI and the TPP/NP–PI ratio with thermogravimetric analysis and limiting oxygen index (LOI) testing. ABS compositions with no NP–PI were also prepared for comparison. The mixtures showed a synergistic effect between TPP and NP–PI on the flame‐retardance enhancement of ABS. Those containing the higher molar mass NP–PI adduct were the most flame retardant, and a LOI value as high as 41 was obtained. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 721–728, 2006  相似文献   

10.
2,4‐Dichlorophenyl methacrylate (2,4‐DMA) and vinyl acetate (VAc) were copolymerized with different feed ratios using dimethyl formamide (DMF) as a solvent and 2,2′‐azobisisobutyronitrile (AIBN) as an initiator at 70°C. The copolymers were characterized by infrared (IR) spectroscopy. Copolymer compositions were determined by ultraviolet (UV) spectroscopy. The monomer reactivity ratios were evaluated by the Fineman–Ross method. Average molecular weight and polydispersity index were determined by gel permeation chromatography (GPC), and the intrinsic viscosities of polymers were also discussed. Thermogravimetric analyses of polymers were carried out under a nitrogen atmosphere. The homo‐ and copolymers were tested for their antimicrobial activity against selected microorganisms. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 895–900, 2003  相似文献   

11.
The previously developed model [Polym Bull 2000, 44, 525] used to characterize the porous gel inside a gel permeation chromatography (GPC) column, has been extended to also include the interstitial space between the macroscopic gel particles. The hydrodynamic dimensions for 12 polystyrene (PS) standards, measured by GPC with differential refractive index (DRI), differential viscometry (VISCO), and multiangle laser light scattering (MALLS) detectors, have been used to determine the fractal parameters of the polystyrene–divinylbenzene gel corresponding to four commercial columns. The new developed model enables to predict the calibration curve for the sets of coupled columns based on the parameters of each column. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 771–777, 2004  相似文献   

12.
13.
Novel thermosensitive, cationic polyelectrolyte was obtained by grafting N‐vinylformamide onto hydroxypropylcellulose followed by the hydrolysis of the formamide groups to the amine groups. The effect of the ionic strength on the lower critical solution temperature of the polymers was studied. The interactions of the polymers with sodium dodecyl sulfate (SDS) as a model anionic surfactant were studied. It was found by the measurements of the light scattering and fluorescence spectroscopy that the graft copolymers obtained strongly interact with SDS with the formation of polymer‐surfactant complexes. The values of critical association concentration (cac) of these polymer‐surfactant systems were found to be of the order of 10?5 mol/dm3 at pH = 6.5 and of the order of 10?6 mol/dm3 at pH = 2.5. The polymer was shown to be potentially useful for the purification of water from anionic surfactants. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
The activated‐monomer cationic ring‐opening polymerization of ethylene oxide, initiated with ethylene glycol and using an acid‐exchanged montmorillonite clay called Maghnite‐H+ as an effective catalyst, was carried out to obtain the corresponding homopolymers with narrow polydispersity ratios. The molecular weights of the obtained polymers were controlled with the feed ratio of the monomer to the initiator. The effects of the amount of the catalyst and time on the polymerization yield and viscosity of the polymers were studied. The structure was confirmed with proton nuclear magnetic resonance and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
Four urethane acrylate oligomers were synthesized by a reaction of an excess of isophorone diisocyanate (D) with polypropylene glycol Acclaim 4200N (P) with a subsequent reaction of nonreacted D with a hydroxy acrylate Tone M100 (A). The latter has a common name caprolactone acrylate. Oligomers were prepared by different ways of addition of P to D or D to P and at different ratio of [D]/[P]. The fifth oligomer ADA was prepared as an individual compound. Viscosities, GPC traces, Tg's of oligomers were taken alongside with other physical properties of cured oligomers. It was demonstrated that oligomers with P consist of ADPDA, ADA, and of a chain‐extended product A… Pn… A, which has two or more Ps in a molecule. Additive contributions of these three components essentially determine properties of the liquid and cured oligomers. Structure‐property relations of urethane acrylate oligomers are discussed. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99:489–494, 2006  相似文献   

16.
Propylene oligomers were isolated from polymer matrix by dissolution precipitation and Soxhlet methods and characterized by Fourier transform infrared spectrometry, ultraviolet, high‐performance liquid chromatography, and gel permeation chromatography. Both extracts showed that these hydrocarbon chemicals have a maximal absorption at 210 nm and are eluted from a C8 column with a strong mobile phase (tetrahydrofuran). However, their average molecular weights are different depending upon the quality of extraction: the fraction obtained by the dissolution‐precipitation method is homogeneous in molecular weight, whereas the one obtained by Soxhlet extraction has a higher polydispersity index (Mn /Mw ). The specific migration test of propylene oligomers in a food simulant (isooctane) shows total diffusion within 60 min. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 371–375, 1999  相似文献   

17.
A variety of fluoroalkyl end‐capped 3‐[N‐(3‐acrylamido)propyl‐N,N‐dimethylammonio]propanesulfonate polymers [RF–(APDAPS)n–RF] were prepared by the reactions of fluoroalkanoyl peroxides with the corresponding monomer under very mild conditions. Similarly, fluoroalkyl end‐capped 2‐vinylpyridinio propane sulfonate polymer was obtained by the use of fluoroalkanoyl peroxide. These fluoroalkyl end‐capped sulfobetaine polymers exhibited a good solubility in water; however, these polymers have a poor solubility in other solvents. In particular, RF–(APDAPS)n–RF polymers caused gelation in methanol, although RF–(VPPA)n–RF polymer showed no gelation in methanol. RF–(APDAPS)n–RF polymers were found to form the self‐assembled molecular aggregates with the aggregations of the end‐capped fluoroalkyl segments and the ionic interactions between sulfobetaine segments in aqueous solutions. On the other hand, it was suggested that RF–2‐vinylpyridinio propane sulfonate (VPPS)n–RF polymer is not likely to form the self‐assemblies in aqueous solutions because of the steric hindrance of pyridiniopropyl betaine units in polymer. We also studied the surfactant properties of RF–(APDAPS)n–RF and RF–(VPPS)n–RF polymers compared with those of other fluoroalkyl end‐capped betaine‐type polymers such as 2‐acrylamido‐2‐methylpropanesulfonic acid polymers and 2‐(3‐acrylamidopropyldimethylammonio) ethanoate polymers. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1144–1153, 2004  相似文献   

18.
Four different samples of ferrocene‐grafted hydroxyl‐terminated polybutadiene (Fc‐HTPB), containing 0.20, 0.52, 0.90, and 1.50 wt % iron, were synthesized by the Friedel–Crafts alkylation of ferrocene with hydroxyl‐terminated polybutadiene (HTPB) in the presence of AlCl3 as a (Lewis acid) catalyst. The effects of the reaction conditions on the extent of ferrocene substitution were investigated. The Fc‐HTPBs were characterized by IR, ultraviolet–visible, 1H‐NMR, and 13C‐NMR spectra. The iron content and number of hydroxyl groups were estimated, and the properties, including thermal degradation, viscosity, and propellant burning rates (BRs), were also studied. The thermogravimetric data indicated two major weight loss stages around 395 and 500°C. These two weight losses were due to the depolymerization and decomposition of the cyclized product, respectively, with increasing temperature. The Fc‐HTPB was cured with toluene diisocyanate and isophorone diisocyanate separately with butanediol–trimethylolpropane crosslinker to study their mechanical properties. Better mechanical properties were obtained for the gumstock of Fc‐HTPB polyurethanes with higher NCO/OH ratios. The BRs of the ammonium perchlorate (AP)‐based propellant compositions having these Fc‐HTPBs (without dilution) as a binder were much higher (8.66 mm/s) than those achieved with the HTPB/AP propellant (5.4 mm/s). © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
The aggregation behavior of 3,6‐O‐carboxymethylated chitin (3,6‐O‐CM‐chitin) in aqueous solutions was investigated by viscometry, gel permeation chromatography (GPC), and GPC combined with laser light scattering (GPC‐LLS) techniques. 3,6‐O‐CM‐chitin has a strong tendency to form aggregates in NaCl aqueous solutions with the apparent aggregation number (Nap) of about 27. There were three kinds of aggregates corresponding to different cohesive energies, the aggregates with low cohesive energy were first dissociated at 60°C, the aggregates with middle cohesive energy were then dissociated at 80 to 90°C, and the aggregates with high cohesive energy were difficult to be disrupted by heating. Decreasing polysaccharide concentration (cp) or increasing NaCl concentration (cs) reduced the content of the aggregates. At the critical cp of 2.5 × 10?5 g/mL, the aggregates were dissociated into single chains completely. The change of aggregation and disaggregation of 3,6‐O‐CM‐chitin in water–cadoxen mixtures occurred from 0.1 to 0.4 of vcad, and were irreversible. Intermolecular hydrogen bonding can be ascribed as main driving force for aggregation. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1838–1843, 2002  相似文献   

20.
HDI缩二脲多异氰酸酯的合成   总被引:5,自引:0,他引:5       下载免费PDF全文
沈慧芳  涂伟萍  陈焕钦 《化工学报》2001,52(11):1017-1020
引 言HDI缩二脲是指用HDI(六亚甲基二异氰酸酯 ,NCO— (CH2 ) 6—NCO)和另一组分合成的具有缩二脲结构 (NCO—NH—CO—NH— )的多异氰酸酯预聚物 ,属于脂肪族聚氨酯涂料广泛使用的固化剂之一 .脂肪族聚氨酯涂料因其具有其他类涂料无可比拟的耐候性和高装饰性 ,近年来在飞机蒙皮漆、汽车面漆、建筑外墙涂料等方面的应用越来越广泛 ,需求量逐步增加[1] .其中最广泛使用的固化剂是HDI缩二脲多异氰酸酯 .生产该化合物的过程中 ,HDI与水反应合成缩二脲反应体系的副反应非常多 ,产物组成很复杂 .如何控制反应过程 ,…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号