首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the performance of multiuser CDMA systems with different space time code schemes is investigated over Nakagami fading channel. Low-complexity multiuser receiver schemes are developed for space-time coded CDMA systems with perfect and imperfect channel state information (CSI). The schemes can make full use of the complex orthogonality of space-time coding to obtain the linear decoding complexity, and thus simplify the exponential decoding complexity of the existing scheme greatly. Moreover, it can achieve almost the same performance as the existing scheme. Based on the bit error rate (BER) analysis of the systems, the theoretical calculation expressions of average BER are derived in detail for both perfect CSI and imperfect CSI, respectively. As a result, tight closed-form BER expressions are obtained for space-time coded CDMA with orthogonal spreading code, and approximate closed-form BER expressions are attained for space-time coded CDMA with quasi-orthogonal spreading code. Computer simulation for BER shows that the theoretical analysis and simulation are in good agreement. The results show that the space-time coded CDMA systems have BER performance degradation for imperfect CSI.  相似文献   

2.
通过引入满速率空时分组码方案, 该文给出一种满速率空时分组编码CDMA系统模型, 并针对现有空时编码CDMA系统过高的译码复杂度, 提出一种低复杂度的多用户接收方案。该方案在通过类似多用户检测方法有效抑制多用户干扰后, 充分利用空时分组码的复正交性来简化原有方案高译码复杂度。与原有指数性译码复杂度相比, 该方案有着线性复杂度, 而且与满分集空时分组编码CDMA系统相比, 可实现满速率、低复杂度和部分分集, 有着相对多的空间冗余信息, 从而级联信道编码后可有效弥补部分分集所带来的性能损失。仿真结果表明在相同系统容量和级联码的情况下, 所给系统比相应的满分集空时编码CDMA系统有着低的误比特率。  相似文献   

3.
The uplink performance of multi-user space–time-coded code-division multiple access (STC-CDMA) system in Rician fading channel is presented. A simple and effective multi-user receiver scheme is developed for STC-CDMA system. The scheme has linear decoding complexity when compared to the existing scheme with exponential decoding complexity, and thus implements low-complexity decoding. Based on the bit error rate (BER) analysis and moment generation function, theoretical BER expressions are derived for STC-CDMA with orthogonal and quasi-orthogonal spreading code, respectively. It is shown that these expressions have more accuracy. Using these expressions and the approximation of error function, closed-form approximate BER expressions are obtained, which can simplify the calculation of the derived theoretical BER. Simulation results show that the developed low-complexity decoding scheme can achieve almost the same performance as the existing scheme. The theoretical BER are in good agreement with the corresponding simulated values. Moreover, the presented approximate expressions are also close to the simulated values due to the better approximation. Under the same system throughput and concatenation of channel code, the presented full-rate STC-CDMA system has lower BER than the corresponding full-diversity STC-CDMA systems.  相似文献   

4.
We propose a new serial concatenation scheme for space‐time and recursive convolutional codes, in which a space‐time code is used as the outer code and a single recursive convolutional code as the inner code. We discuss previously proposed serial concatenation schemes employing multiple inner codes and compare them with the new one. The proposed method and the previous one with joint decoding, both performing a combined decoding of the simultaneous output signals from multiple antennas, give a large performance gain over the separate decoding method. In decoding complexity, the new concatenation scheme has a lower complexity compared with the multiple encoding/joint decoding scheme due to the use of the single inner code. Simulation results for a communication system with two transmit and one receive antennas in a quasi‐static Rayleigh fading channel show that the proposed scheme outperforms the previous schemes.  相似文献   

5.
A novel multiuser code division multiple access (CDMA) receiver based on genetic algorithms is considered, which jointly estimates the transmitted symbols and fading channel coefficients of all the users. Using exhaustive search, the maximum likelihood (ML) receiver in synchronous CDMA systems has a computational complexity that is exponentially increasing with the number of users and, hence, is not a viable detection solution. Genetic algorithms (GAs) are well known for their robustness in solving complex optimization problems. Based on the ML rule, GAs are developed in order to jointly estimate the users' channel impulse response coefficients as well as the differentially encoded transmitted bit sequences on the basis of the statistics provided by a bank of matched filters at the receiver. Using computer simulations, we showed that the proposed receiver can achieve a near-optimum bit-error-rate (BER) performance upon assuming perfect channel estimation at a significantly lower computational complexity than that required by the ML optimum multiuser detector. Furthermore, channel estimation can be performed jointly with symbol detection without incurring any additional computational complexity and without requiring training symbols. Hence, our proposed joint channel estimator and symbol detector is capable of offering a higher throughput and a shorter detection delay than that of explicitly trained CDMA multiuser detectors  相似文献   

6.
We derive a low-complexity receiver scheme for joint multiuser decoding and parameter estimation of code division multiple access signals. The resulting receiver processes the users serially and iteratively and makes use of soft-in soft-out single-user decoders, of soft interference cancellation and of expectation-maximization parameter estimation as the main building blocks. Computer simulations show that the proposed receiver achieves near single-user performance at very high channel load (number of users per chip) and outperforms conventional schemes with similar complexity  相似文献   

7.
在现有几种满分集空时码的基础上,提出两种满速率和复正交的多天线空时块码方案。一种是基于时分双工(TDD)模式下最大信道增益而设计的;另一种则不再限于TDD方式,具有普遍适用性。同时利用Turbo码良好的抗衰落信道的突发错误能力,来进一步提高所提方案性能。与满分集多天线空时块码相比,该方案可实现满速率、低复杂度和部分分集,具有相对多的空间冗余信息,从而级联Turbo码后可有效弥补部分分集所带来的性能损失。仿真结果也表明在相同系统容量和级联码的情况下,所提方案比其它相应的满分集空时码有着更低的误比特率。  相似文献   

8.
A turbo multiuser receiver is proposed for space-time block and channel-coded code division multiple access (CDMA) systems in multipath channels. The proposed receiver consists of a first stage that performs detection, space-time decoding, and multipath combining followed by a second stage that performs the channel decoding. A reduced complexity receiver suitable for systems with large numbers of transmitter antennas is obtained by performing the space-time decoding along each resolvable multipath component and then diversity combining the set of space-time decoded outputs. By exchanging the soft information between the first and second stages, the receiver performance is improved via iteration. Simulation results show that while in some cases a noniterative space-time coded system may have inferior performance compared with a system without space-time coding in a multipath channel, proposed iterative schemes significantly outperform systems without space-time coding, even with only two iterations. Furthermore, the performance loss in the reduced-complexity receiver due to decoupling of interference suppression, space-time decoding, and multipath combining is very small for error rates of practical interest.  相似文献   

9.
A new quasi-orthogonal space-time block code (QO-STBC) based on ABBA code with lower decoding complexity and higher bit error statistics (BER) performance was proposed by U.Park recently,which can obtain full transmission rate and full diversity.In this article,the authors proposed an improved U.Park scheme based on rotational ABBA code.For eliminating the interference terms resulting from neighboring signals during signal detection,two different matrixes are used.And independent decoding can be realized when maximum-likelihood decoding at the receiver is used.Simulation results demonstrate that the BER performance is improved dramatically without increasing the decoding complexity compared with U.Park scheme.  相似文献   

10.
In this paper, we consider iterative space-time multiuser detection and channel parameter estimation in a bit-interleaved coded modulation scheme for asynchronous direct-sequence code division multiple access (DS-CDMA) transmission over frequency selective, slowly fading channels. Accurate estimation of the channel parameters is critical as it has great impact on the overall BER performance. We present an iterative space-time multiuser (STMU) turbo detection and estimation scheme, based on space alternating generalized expectation maximization (SAGE) algorithm. This algorithm operates on the coded symbols by exchanging soft information between the detector and the estimator. We show through computer simulations that the proposed low complexity STMU receiver considerably outperforms conventional estimation schemes and achieves excellent performance, both in terms of BER and estimation error variance. Finally, we will consider different mapping strategies and investigate their impact on the performance and complexity of the estimator.  相似文献   

11.
This paper assesses the performance of a multiuser detection DS/CDMA receiver based on a hybrid scheme of successive interference cancellation (SIC) and parallel interference cancellation (PIC). Two configurations of the proposed hybrid IC are presented and compared with existing SIC and PIC schemes. The performance criteria used for comparison are complexity, delay, power control requirements, and average bit-error rate (BER) performance obtained by simulation in Rayleigh-fading channels with additive white Gaussian noise (AWGN). The suggested hybrid IC combines good average BER performance, short delay, acceptable complexity, and also operates under slow power control  相似文献   

12.
The optimal decoding scheme for a code-division multiple-access (CDMA) system that employs convolutional codes results in a prohibitive computational complexity. To reduce the computational complexity, an iterative receiver structure was proposed for decoding multiuser data in a convolutional coded CDMA system. At each iteration, extrinsic information is exchanged between a soft-input/soft-output (SISO) multiuser detector and a bank of single-user SISO channel decoders. However, a direct implementation of the full-complexity SISO multiuser detector also has the exponential computational complexity in terms of the number of users. This paper proposes a low-complexity SISO multiuser detector based on tentative hard decisions that are made and fed back from the channel decoders in the previous iteration. The computational complexity of the proposed detector is linear in terms of the number of users and can be adjusted according to the complexity/performance tradeoff. Simulation results show that even with this simple feedback scheme, the performance of the coded multiuser system approaches that of the single-user system for moderate to high signal-to-noise ratios (SNRs)  相似文献   

13.
In this letter, we evaluate the system performance of a space‐time block coded (STBC) multicarrier (MC) DS‐CDMA system over a time selective fading channel, with imperfect channel knowledge. The average bit error rate impairment due to imperfect channel information is investigated by taking into account the effect of the STBC position. We consider two schemes: STBC after spreading and STBC before spreading in the MC DS‐CDMA system. In the scheme with STBC after spreading, STBC is performed at the chip level; in the scheme with STBC before spreading, STBC is performed at the symbol level. We found that these two schemes have various channel estimation errors, and that the system with STBC before spreading is more sensitive to channel estimation than the system with STBC after spreading. Furthermore, derived results prove that a high spreading factor (SF) in the MC DS‐CDMA system with STBC before spreading leads to high channel estimation error, whereas for a system with STBC after spreading this statement is not true.  相似文献   

14.
This paper examines the performance of a reduced rank minimum mean square error (MMSE) receiver‐based direct sequence code division multiple access (DS‐CDMA) system. For such system, when a large processing gain is employed, substantial time is consumed in computing the filter tap weights. Many schemes for reducing the complexity of the MMSE have been proposed in recent years. In this paper, computational complexity reduction of the MMSE receiver is achieved by using the K‐mean classification algorithm. The performance of the uncoded and coded systems are investigated for the full rank MMSE receiver and reduced rank MMSE receiver and results are compared in terms of bit error rate at different loading levels in both AWGN and fading channels. A system with the matched filter (MF) receiver is also presented for the purpose of comparison and an analytical pair‐wise error bound for the coded system is derived. In the adaptive implementation of the receivers, results show that good performance is achieved for the reduced rank receiver when compared to the full rank receiver in both coded and uncoded systems, while in the optimum implementation of the tap weights, the reduced dimension receiver performance experiences degradation when compared to the full rank scheme. Over the band‐limited channels considered, results for the reduced rank receiver also reiterate the fact that higher code rates tend to yield lower BER than that of low rate codes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
The performance of antenna diversity coherent and differentially coherent linear multiuser receivers is analyzed in frequency-nonselective Rayleigh fading CDMA channels with memory. The estimates of the complex fading processes are utilized for maximal-ratio combining and carrier recovery of the coherent multiuser receiver. To analyze the impact of channel estimation errors on the receiver performance, error probability is assessed directly in terms of the fading rate and the number of active users, showing the penalty imposed by imperfect channel estimation as well as the fading-induced error probability floor. The impact of fading dynamics on the differentially coherent decorrelating receiver with equal-gain combining is quantified. While performance of multiuser receivers at lower SNR is determined by both the fading dynamics and the number of active CDMA users, performance at higher SNR is given by an error probability floor which is due to fading only and has the same value as in a single-user case. The comparison of the two receiver structures indicates that the coherent decorrelating receiver with diversity reception may be preferable to the differentially coherent one in nonselective fading CDMA channels with memory.  相似文献   

16.
In this paper, the performance of maximum-likelihood multiuser detection in space-time-coded code-division multiple-access (CDMA) systems with imperfect channel estimation is analyzed. A K-user synchronous CDMA system that employs orthogonal space-time block codes with M transmit antennas and N receive antennas is considered. A least-squares estimate of the channel matrix is obtained by sending a sequence of pilot bits from each user. The channel matrix is perturbed by an error matrix that depends on the thermal noise and the correlation between the signature waveforms of different users. Because of the linearity of the channel estimation technique, the characteristic function of the decision variable is used to obtain an exact expression for the pairwise error probability, and by using it, an upper bound on the bit error rate (BER) is obtained. The analytical BER bounds are compared with the BER obtained through simulations. The BER bounds are shown to be increasingly tight for large SNR values. It is shown that the degradation in BER performance due to imperfect channel estimation can be compensated by using a larger number of transmit/receive antennas  相似文献   

17.
The optimal decoding scheme for asynchronous code-division multiple-access (CDMA) systems that employ convolutional codes results in a prohibitive computational complexity. To reduce the computational complexity, an iterative receiver structure was proposed for decoding multiuser data in a convolutional coded CDMA system. At each iteration, extrinsic information is exchanged between a soft-input soft-output (SISO) multiuser detector and a bank of single-user SISO channel decoders. A direct implementation of the optimal SISO multiuser detector, however, has exponential computational complexity in terms of the number of users which is still prohibitive for channels with a medium to large number of users. This paper presents a low-complexity SISO multiuser detector using the decision-feedback scheme, of which tentative hard decisions are made and fed back to the SISO multiuser from the previous decoding output. In the proposed scheme, the log-likelihood ratios (LLR) as well as the tentative hard decisions of code bits are fed back from the SISO decoders. The hard decisions are used to constrain the trellis of the SISO multiuser detector and the LLRs are used to provide a priori information on the code bits. The detector provides good performance/complexity tradeoffs. The computational complexity of the detector can be set to be as low as linear in the number of users. Simulations show that the performance of the low-complexity SISO multiuser detector approaches that of the single-user system for moderate to high signal-to-noise ratios even for a large number of users.  相似文献   

18.
Cyclic-prefix code division multiple access (CP-CDMA), multicarrier CDMA (MC-CDMA) and single carrier cyclic-prefix (SCCP) transmission are some schemes that could support the increasing demand of future high data rate applications. The linear and nonlinear equalizers used to detect the transmitted signal are always far from the Maximum-Likelihood (ML) detection bound. The block iterative generalized decision feedback equalizer (BI-GDFE) is an iterative and effective interference cancelation scheme which could provide near-ML performance yet with very low complexity. In order to deploy this scheme, the channel state information (CSI) must be available at the receiver. In practice, this information has to be estimated by using pilot and data symbols. This paper investigates the problem of channel estimation using the Expectation Maximization (EM) algorithm. The BI-GDFE provides the soft information of the transmitted signals to the EM-based algorithm in the form a combination of hard decision and a coefficient so-called the input-decision correlation (IDC). The resultant receiver becomes a doubly iterative scheme. To evaluate the performance of the proposed estimation algorithm, the Cramér-Rao Lower Bound (CRLB) is also derived. Computer simulations show that the bit error rate (BER) performance of the proposed receiver for joint channel estimation and signal detection can reach the performance of the BI-GDFE with perfect CSI.  相似文献   

19.
Iterative receivers for multiuser space-time coding systems   总被引:8,自引:0,他引:8  
Space-time coding (STC) techniques, which combine antenna array signal processing and channel coding techniques, are very promising approaches to substantial capacity increase in wireless channels. Multiuser detection techniques are powerful signal processing methodologies for interference suppression in CDMA systems. In this paper, by drawing analogies between a synchronous CDMA system and an STC multiuser system, we study the applications of some multiuser detection methods to STC multiuser systems. Specifically, we show that the so-called “turbo multiuser detection” technique, which performs soft interference cancellation and decoding iteratively, can be applied to STC multiuser systems in flat-fading channels. An iterative multiuser receiver and its projection-based variants are developed for both the space-time block coding (STBC) system and the space-time trellis coding (STTC) system. During iterations, extrinsic information is computed and exchanged between a soft multiuser demodulator and a bank of MAP decoders, to achieve successively refined estimates of the users' signals. Computer simulations demonstrate that the proposed iterative receiver techniques provide significant performance improvement over conventional noniterative methods in both single-user and multiuser STC systems. Furthermore, the performance of the proposed iterative multiuser receiver approaches that of the iterative single-user receiver in both STBC and STTC systems  相似文献   

20.
The problems of channel estimation and multiuser detection for direct sequence code division multiple access (DS/CDMA) systems employing long spreading codes are considered. With regard to channel estimation, several procedures are proposed based on the least-squares approach, relying on the transmission of known training symbols but not requiring any timing synchronization. In particular, algorithms suited for the forward and reverse links of a single-rate DS/CDMA cellular system are developed, and the case of a multirate/multicode system, wherein high-rate users are split into multiple virtual low-rate users, is also considered. All of the proposed procedures are recursively implementable with a computational complexity that is quadratic in the processing gain, with regard to the issue of multiuser detection, an adaptive serial interference cancellation (SIC) receiver is considered, where the adaptivity stems from the fact that it is built upon the channel estimates provided by the estimation algorithm. Simulation results show that coupling the proposed estimation algorithms with a SIC receiver may yield, with a much lower computational complexity, performance levels close to those of the ideal linear minimum mean square error (MMSE) receiver, which assumes perfect knowledge of the channels for all of the users and which (in a long-code scenario) has a computational complexity per symbol interval proportional to the third power of the processing gain  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号