首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents new data on the resistance of recently developed high-alloy stainless steels to localised corrosion in chloride solutions. Pitting potential was determined in artificial sea water, and critical pitting temperature CPT in very aggressive FeCl3 solution. Critical crevice corrosion temperature CCT was tested in the same FeCl3 solution. Stress corrosion measurements, made in a more familiar NaCl solution by the drop evaporation method, demonstrate that alloy stainless steels with high chromium and molybdenum have very long failure times, comparable with those of nickel alloys found to be SCC-resistant under practical conditions. Stainless steels of 20 Cr 25 Ni 6 Mo type showed the best resistance to localised corrosion.  相似文献   

2.
Surface treatments of high alloy 6 Mo stainless steel and nickel alloy weldments High alloy stainless steels (6% Mo) and a high nickel alloy (alloy 625) weldment have been tested in order to answer the question whether post-treatment of the weldment has an effect on the corrosion resistance, especially on pitting corrosion. Therefore, the critical pitting temperature of weldments was tested in acidic chloride solution (standard tests). As a result grinding with rough emery paper as well as sand blasting lowers the localized corrosion resistance in the weldment area, while pickling has a positive effect, especially after blasting. Pickling can be done either by a solution of nitric + hydrofluoric acid or by a commercial pickling paste. In any event pickling is recommended as a final surface treatment for high alloy stainless steels and nickel alloys, especially in case of prevailing highly corrosive conditions such as pitting and crevice corrosion.  相似文献   

3.
The corrosion behavior of three stainless steels EN 14311, EN 14429 (austenitic stainless steels) and EN 14462 (duplex stainless steel) was studied in a commercial LiBr solution (850 g/l LiBr solution containing chromate as inhibitor) at different temperatures (25, 50, 75 and 85 °C) by electrochemical methods.Open circuit potentials shifted towards more active values as temperature increased, while corrosion potentials presented the opposite tendency. The most resistant alloys to general corrosion were EN 14429 and EN 14462 because they had the lowest corrosion current for all temperatures. In all the cases corrosion current increases with temperature.Pitting corrosion resistance is improved by the EN 14462, which presented the highest pitting potential, and the lowest passivation current for the whole range of temperatures studied. The duplex alloy also presents the worst repassivation behavior (in terms of the narrowest difference between corrosion potential and pitting potential); it does not repassivate from 50 °C.  相似文献   

4.
0Cr25Ni7Mo4、316与304不锈钢临界点蚀温度研究   总被引:2,自引:0,他引:2  
采用外加恒定电位下腐蚀电流-温度扫描方法研究了0Cr25Ni7Mo4、304和316不锈钢在1 mol/L NaCl水溶液中的点蚀行为。利用不锈钢临界点蚀温度评价了材料的耐点蚀性能.测得0Cr25Ni7Mo4和316不锈钢的临界点蚀温度分别为79.5 ℃和15 ℃,304不锈钢在0 ℃以下.对0Cr25Ni7Mo4不锈钢材料优良耐点蚀性能的原因进行了分析讨论.  相似文献   

5.
On a phenomenon of the limitation of pitting corrosion at high alloyed special stainless steels and NiCrMo-alloys in chloride solutions Testing the pitting corrosion resistance of high alloyed special stainless steels and NiCrMo-alloys in chloride solutions there was observed a limitation of the pitting corrosion range toward more positive potentials. Above this limitation, the so-called pitting corrosion limitation potential, the pit initiation by all means is prevented, but the growth of pits which had been initiated before in the pitting corrosion range not necessarily comes to a stop. Therefore current density-potential curves which are obtained by downward polarization after an initial potential jump into the transpassive region and chronopotentiostatic tests are more suitable to investigate this phenomenon than cyclic polarization measurements and potentiostatic alteration tests. There is indicated a dependence of this phenomenon on temperature. The phenomenon of a limitation of the pitting corrosion range toward more positive potentials has been found until now at alloy 926, alloy 31, alloy 28, alloy 59 and alloy C-276.  相似文献   

6.
In harsh chloride bearing environments stainless steel reinforcing bars offer excellent corrosion resistance and very long service life for concrete structures, but the high costs limit a more widespread use. Manganese bearing nickel‐free stainless steels could be a cost‐effective alternative. Whereas the corrosion behavior of stainless steels in alkaline solutions, mortar and concrete is quite well established, only little information on the reasons for the high pitting resistance are available. This work reports the results of pitting potential measurements in solutions simulating alkaline and carbonated concrete on black steel, stainless steel DIN 1.4301, duplex steel DIN 1.4462, and nickel‐free stainless steel DIN 1.4456. Duplex and nickel‐free stainless steels are fully resistant even in 4 M NaCl solutions with pH 13 or higher, the lower grade DIN 1.4301 shows a wide scatter between fully resistant and pitting potentials as low as +0.2 V SCE. In carbonated solutions with pH 9 the nickel‐free DIN 1.4456 shows pitting corrosion at chloride concentrations ≥3 M. This ranking of the pitting resistance can be rationalized based on XPS surface analysis results: both the increase of the Cr(III)oxy‐hydroxide and Mo(VI) contents in the passive film and a marked nickel enrichment beneath the film improve the pitting resistance. The duplex DIN 1.4462 shows the highest pitting resistance, which can be attributed to the very high Cr(III)oxy‐hydroxide, to a medium Mo(VI) content in the film and to a nickel enrichment beneath the film. Upon time, the protective properties of the surface film improve. This beneficial effect of ageing (transformation of the passive film to a less Fe2+ containing, more hydrated film) will lead to higher pitting potentials. It can be concluded that short‐term solution experiments give conservative results in terms of resistance to chloride‐induced corrosion in reinforced concrete structures.  相似文献   

7.
Electrochemical investigation into the pitting corrosion of corrosion resistant steels In view of the fact that the characteristics termed pitting potential depend from the measuring methods and nonstationary defects and hysteresis phenomena produced thereby these condition have been investigated on three different systems. In sulphate inhibited chloride solution an actual hysteresis is found with two critical boundary potentials for pit formation and pit passivation. The first of these potentials may be found either by potentiocinetic or by potentiostatic methods, the second only galvanostatically. In the case of 35% Cr steel no hysteresis is found; in this case there is no connection between pitting potential and the current and potential variations found during the investigation. With this material pitting corrosion may occur below the pitting potential while the pit passivation potential is a function of the properties of the measuring circuit. The pitting behaviour of austenitic CrNi steels containing various amounts of molybdenum may be characterized potentiostatically or potentiocinetically, but at low voltage feed rates only.  相似文献   

8.
Corrosion behaviour of some cast stainless steels and high alloy white irons in scrubber solutions of flue gas desulfurization plants Weight loss and electrochemical measurements have been used to determine the ranges of applicability of cast austenitic stainless steel Werkstoff No. 1.4408, of two special cast ferritic-austenitic stainless steels NORIDUR® 9.4460 and NORICLOR® NC 24 6 and of two high alloy Cr and CrMo white irons in scrubber solutions of Flue Gas Desulfurization (FGD) plants. Whereas the Werkstoff No. 1.440 8 cannot be used due to its insufficient resistance to general and localized corrosion, NORIDUR® 9.4460 can be used in scrubber solutions with pH > 2.5 and chloride concentrations up to 80 g/l, NORICLOR® NC 24 6 with 5% Mo even in liquids with pH > 1.5 and chlorides up to 100 g/l. At lower pH-values both duplex stainless steels show active corrosion of either the austenite or the ferrite depending on the contents of hydrochloric acid in the solution. At higher chloride concentrations pitting occurs on the passive materials. The CrMo white iron NORILOY NL 25 2 with 25% Cr and 2% Mo can be used in scrubber liquids with pH > 3.5. As the ferritic matrix is cathodically protected by the precipitated carbides, there is no sensitivity of this alloy to chlorides. In liquids with pH < 3.5 there is selective corrosion of the ferritic matrix. For practical application of all these cast alloys the limits for purely corrosive attack have to be modified to assure. resistance to a superposition of corrosion, erosion/abrasion and cavitation on parts exposed to real flow conditions in FGD scrubbers.  相似文献   

9.
A large number of production and laboratory heats in grades AISI 304 and 316 with normal and extremely low managanese and sulphur contents and a number of production heats in more highly alloyed austenitic stainless steels have been studied with regard to their resistance to initiation of pitting and crevice corrosion at various temperatures. The criteria for resistance to initiation was the potentiodynamic pitting potential in 0.1 M NaCl and synthetic seawater and the time to attack initiation for crevice corrosion in 0.5 and 5% NaCl solutions. A large number of production and laboratory heats in grades AISI 304 and 316 with normal and extremely low managanese and sulphur contents and a number of production heats in more highly alloyed austenitic stainless steels have been studied with regard to their resistance to initiation of pitting and crevice corrosion at various temperatures. The critieria for resistance to initiation was the potentiodynamic pitting potential in 0.1 M NaCl and synthetic seawater and the time to attack initiation for crevice corrosion in 0.5 and 5% NaCl solutions. The main aims of the study were to examine both the effect of manganese relative to that of chromium, molybdenum and sulphur and the effect of heat treatment and sulphide composition on steels with low manganese contents. Mathematical models for calculation of the pitting potentials have been constructed and multiple linear regression analysis gave the equations and their reliabilities. Lowering of the Mn content in austenitic stainless steels to 0.2% gives rise to a material of interest for constructions where pitting or crevice corrosion are judged to be the only potential types of attack, where operational disturbances leading to greatly increased corrosivity do not occur, where attack can not be tolerated, and where steel with normal managanese content has not exhibited fully satisfactory corrosion resistance. If the above conditions are fulfilled the low manganese content can be said to correspond to the same positive effect as is obtained by an addition of the least 1.5% Mo.  相似文献   

10.
Influence of manganese on the corrosion properties of austenitic 18.10-CrNi stainless steels The influence of manganese in the range of 0.25 to 1.5 mass-% on the passivation and pitting corrosion behaviour of unstabilized and Tistabilized austenitic 18/10 CrNi stainless steels is examined by determination of useful characteristical electrochemical dates using potentiodynamical polarization measurements in H2SO4-acidic and neutral model electrolytes. In the case of Ti-stabilized steels, a trend to an improved ability to passivation and to an increased pitting corrosion resistance is signified with increased Mn-content. This is in agreement with the austenite stabilizing effect of manganese. In the case of unstabilized steels, a significant deterioration of the passivation and pitting corrosion behaviour is observed, if the Mn-content of the steel is increased from less than 0.7 to more than 1.0 mass-%. These observations are discussed in the viewpoint of segregation of Mn-rich sulfide inclusions in the steel, which are essentially influenced by the presence of titanium in the steel.  相似文献   

11.
Electrochemical behaviour and scaling of high alloy manganese steels Passivating surface layers are considered to be one of the indispensable requirements for stress corrosion cracking of metallic materials. It is shown by potentiostatic and potentiokinetic current density-potential curves that the steel X 40 MnCrN 19 in neutral aqueous chloride solutions has a passive potential region. The passivation behaviour Of precipitation hardened samples is in agreement with the chromium depletion theory. The effect of alloying on the passivation behaviour of low carbon Mn steels is studied in 3 % NaCl solution at 20 and 100 °C Increasing proportions ε-martensite reduce the passivation of susceptibility. Increasing the Mn content has the same effect. The vital factor concerning passivation behaviour, however, is chromium content. Increasing the temperature of the corrodent results in an increased tendency to form scales of steels containing less than 8 % Cr. Long-term corrosion tests have shown, that increasing the Cr content produces a continuous transition from general localized and even pitting Corrosion. Tests made without applied current in aerated solutions have shown, that the variation in time of corrosion potentials depends from the tendency to be passivated of the materials and from the oxygen content of the solutions. In oxygen containing solutions passivable steels exhibit a pronounced corrosion in the pitting region, because with such alloys anodic dissolution current densities equal to those of the limiting diffusion current of oxygen reduction are obtained only at potentials above the pitting potential.  相似文献   

12.
不锈钢海水潮汐区16年腐蚀行为   总被引:3,自引:0,他引:3  
在青岛、厦门和榆林3个试验站的潮汐区对5种不锈钢暴露16年,总结其腐蚀行为和规律。在潮汐区暴露的不锈钢受点蚀和缝隙腐蚀破坏。不锈钢在潮汐区暴露1至4年的点蚀速度较大,以后点蚀速度减慢。耐点蚀性能较好的不锈钢,耐缝隙腐蚀性能也较好。不锈钢在潮汐区的腐蚀随暴露地点的海水温度升高而加重。增加Cr含量、添加Mo能明显提高不锈钢在潮汐区的耐蚀性。Ni对提高的耐蚀性有效,但影响效果较小。海生物污损能引起不锈钢的局部腐蚀,它对不锈钢在潮汐区的腐蚀有显著影响。  相似文献   

13.
Characteristic features of austenitic steel grades combine a good corrosion resistance with a low hardness, wear resistance and scratch resistance. An interesting possibility for improving the wear behaviour of these steels without loss of their corrosion resistance lies in enriching the near surface region with nitrogen. The process of a solution nitriding allows the rise of the solution of nitrogen in the solid phase. On this state nitrogen increases the corrosion resistance and the tribilogical load-bearing capacity. The aim of the study was, to investigate the improvement of the pitting corrosion behaviour by solution nitriding. A special topic was to observe the effect of nitrogen by different molybdenum content. So austenitic stainless steels (18% Cr, 12% Ni, Mo gradation between 0.06 to 3.6%) had been solution nitrided. The samples could be prepared with various surface content of nitrogen from 0.04 to 0.45% with a step-by-step grinding. The susceptibility against pitting corrosion of these samples had been tested by determination of the stable pitting potential in 0.5M and 1M NaCl at 25℃. For the investigated steel composition and the used corrosion system there is no influence of molybdenum on the effectiveness of nitrogen. The influence of nitrogen to all of the determined parameters can be described well by PRE = Cr 3.3 * Mo 25 *N. XPS analysis of the sample surfaces support the results of the pitting corrosion tests.Additionally surface investigations with an acid elektolyte (0.1M HCl 0.4M NaCl) were performed. In this case the passivation effective nitrogen content increases markedly with rising molybdenum concentration of the steel.Obviously an interaction of Mo and N is connected with a strongly acid electrolyte.  相似文献   

14.
Supermartensitic stainless steels (SMSSs) allow high mechanical strength with better corrosion resistance and toughness than conventional martensitic stainless steels. The SMSS steels with 12–13%Cr have been studied and applied in the oil and gas offshore production. The increase of Cr content, and the addition of Mo and W is now being investigated to increase mechanical and pitting corrosion resistance. In this work, a new 17%Cr steel, with Mo and W additions was studied. Depending on the final tempering treatment, the steel has a complex microstructure of austenite, ferrite, martensite and precipitates. The pitting corrosion resistance also depends on the microstructure produced by tempering. It was found that the pitting potential slightly decreases with the increase of tempering temperature and is further decreased by the double-tempering treatment. The pits initiate and grow preferentially in the martensite or tempered martensite islands, due to the lower Cr, Mo and W contents of these areas.  相似文献   

15.
Pitting corrosion behavior of three kinds of nickel-free and manganese-alloyed high-nitrogen (N) stainless steels (HNSSs) was investigated using electrochemical and immersion testing methods. Type 316L stainless steel (316L SS) was also included for comparison purpose. Both solution-annealed and sensitization-treated steels were examined. The solution-annealed HNSSs showed much better resistance to pitting corrosion than the 316L SS in both neutral and acidic sodium chloride solutions. The addition of molybdenum (Mo) had no further improvement on the pitting corrosion resistance of the solution-annealed HNSSs. The sensitization treatment resulted in significant degradation of the pitting corrosion resistance of the HNSSs, but not for the 316L SS. Typical large size of corrosion pits was observed on the surface of solution-annealed 316L SS, while small and dispersed corrosion pits on the surfaces of solution-annealed HNSSs. The sensitization-treated HNSSs suffered very severe pitting corrosion, accompanying the intergranular attack. The addition of Mo significantly improved the resistance of the sensitization-treated HNSSs to pitting corrosion, particularly in acidic solution. The good resistance of the solution-annealed HNSSs to pitting corrosion could be attributed to the passive film contributed by N, Cr, and Mo. The sensitization treatment degraded the passive film by decreasing anti-corrosion elements and Cr-bearing oxides in the passive film.  相似文献   

16.
采用电化学技术、浸泡腐蚀及能谱分析等研究了合金元素对铸造Fe-Cr铁素体不锈钢耐浓硫酸腐蚀行为的影响。结果表明:随铬含量的增加,Fe-Cr合金的耐浓硫酸腐蚀性能增强,单一的铬合金化不能使Fe-Cr合金在60℃,98%H2SO4中自钝化;钼能促进Fe-Cr25-Mo合金的钝化和自钝化,随钼含量的增加,Fe-Cr25-Mo合金的耐浓硫酸腐蚀性能增强;辅助合金元素镍、铜可促进Fe-Cr25Mo2合金的钝化和自钝化,而钛、铌的影响不大。  相似文献   

17.
The effect of pH on the electrochemical behaviour and passive film composition of 316 L stainless steel in alkaline solutions was studied using electrochemical measurements and a surface analysis method. The critical pH of 12.5 was found for the conversion from pitting corrosion to the oxygen evolution reaction(OER). OER was kinetically faster than pitting corrosion when both reactions could occur, and OER could postpone pitting corrosion. This resulted in pitting being initiated during the reversing scan in the cyclic polarization at the critical pH. According to the X-ray photoelectron spectroscopy analysis, the content of Cr and Mo decreased with pH, while Fe content increased. This induced the degradation of the passive film, which resulted in the higher passive current densities under more alkaline conditions. The selective dissolution of Mo at high p H was found, which demonstrated that the addition of Mo in austenitic stainless steels might not be beneficial to the corrosion resistance of 316L in strong alkaline solutions.  相似文献   

18.
采用电化学极化曲线和电化学阻抗(EIS)测试方法研究Fe_(41)Co_7Cr_(15)Mo_(14)C_(15)B_6Y_2块体非晶合金在0.5,1,2以及4 mol/L HCl溶液中的腐蚀行为,并比较了1 mol/L HCl溶液中非晶合金和不锈钢的腐蚀行为.极化曲线测试结果表明,Fe_(41)Co_7Cr_(15)Mo_(14)C_(15)B_6Y_2块体非晶合金在各种浓度的HCl溶液中都具有很好的耐蚀性,阳极极化曲线表现出明显的钝化特征.随着HCl溶液浓度的增大,其耐蚀性能逐渐下降.在1 mol/L HCl溶液中,非晶合金的自腐蚀电位高于不锈钢,自腐蚀电流密度比不锈钢小1个数量级.EIS结果显示,在开路电位下,Fe_(41)Co_7Cr_(15)Mo_(14)C_(15)B_6Y_2非晶合金和不锈钢的Nyquist图均由单一的容抗弧构成,但非晶合金的电化学转移电阻Rt比不锈钢的大2个数量级,这一结果与极化曲线结果一致,说明非晶合金在HCl溶液中的耐蚀性能优于不锈钢.  相似文献   

19.
Supermartensitic is a new class of stainless steels in development and consolidation as commercial products. Significant changes on chemical composition of conventional martensitic stainless steels, such as the reduction of the carbon content to <0·03 wt-%, and the addition of Ni and Mo, marked the development of this new group of alloys. New grades containing higher amounts of Cr and small additions of Ti and/or Nb were developed recently. As a result, supermartensitic steels offer an interesting combination of high strength, toughness, weldability and corrosion resistance. In this work, the pitting corrosion resistance of a 15Cr supermartensitic steel with Ni, Mo and Cu additions was studied. It is well known that the mechanical properties and corrosion resistance of martensitic steels are adjusted by the final tempering treatment. Several single tempering treatments in the 300–650°C range and double tempering treatments were performed in order to obtain different microstructures. The pitting corrosion resistance was investigated by electrochemical test in 3·5%NaCl solution. It was found that the pitting potential slightly decreased with the increase in temperature and time of tempering. The analysis of pits formed during the corrosion tests showed that ferrite islands are more corrosion resistant than the martensitic matrix due to the higher Cr and Mo contents.  相似文献   

20.
Within the framework of a research aimed at characterizing the behaviour of new materials to pitting and crevice corrosion, an investigation has been made, using electrochemical techniques, of the following materials: ELI ferritic stainless steels (18 Cr-2 Mo-Ti; 21 Cr-3 Mo-Ti; 26 Cr-1 Mo); high chromium duplex stainless steel (Z 5 CNDU 21-08) and high chromium-nickel austenitic stainless steel (Z 2 CNDU 25-20); commercial austenitic stainless steels (AISI 304 L and 316 L) and laboratory heats of austenitic stainless steels with low contents of interstitials (LTM/18 Cr- 12 Ni, LTM/16 Cr- 14 Ni-2 Mo). It was possible to graduate a scale of resistance to pitting and crevice corrosion in neutral chloride solutions at 40 C; in particular the two experimental austenitic stainless steels LTM/18 Cr- 12 Ni and LTM/16 Cr- 14 Ni-2 Mo are at the same level as the AISI 316 L and 18 Cr-2 Mo-Ti, respectively. An occluded cell was developed and used for determining the critical potential for crevice corrosion (Elocalized corrosion). For the steels under investigation Elocalized corrosion is less noble than Epitting especially for ELI ferritic 18 Cr-2 Mo-Ti and 21 Cr–3 Mo-Ti.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号