首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High impact polystyrene (HIPS) resins were obtained with in situ bulk polymerization toughened by styrene–isoprene–butadiene terpolymer rubber (SIBR). SIBR prepolymer was prepared through selective polymerization of styrene (St), isoprene (Ip), and butadiene (Bd) in St with [Nd]/[Al]/[Cl] catalyst. Nd‐based catalyst exhibited more favorable activity toward conjugated diene other than St, resulting in St solution of random SIBR with high cis‐1,4 stereoregularity and low St content, which was directly exposed to the free radical polymerization of St to generate HIPS. Effect of toughened rubber and the initiators [difunctional (D2) and trifunctional (T3)] were examined to attain HIPS possessing mechanical properties as follow: impact strength, 0.9–24.8 kJ/m2; tensile strength, 16.0–27.5 MPa; and elongation at break, 7.4–107.0%. Increasing SIBR matrix in HIPS improved the impact strength and decreased tensile strength. The fracture surface morphologies of HIPS specimens were studied by notched impact tests and scanning electron microscopy (SEM), illustrating that the incremental SIBR matrix presented synergistic toughening effect of crazing to enhance the ductile fracture behavior. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43979.  相似文献   

2.
This article investigated the influence of thermoplastic elastomer like acrylonitrile–butadiene–styrene (ABS) high rubber powder (HRP), and ethylene methylacrylate (EMA) on the mechanical performances, flow ability, and morphology of glass fiber‐reinforced polycarbonate (PC)/ABS blends. Blending was carried out through a twin‐screw extruder, and all testing specimens were shaped by an injection molding machine. Experimental results showed that the toughening effect of EMA was more obvious than HRP due to fracture mechanism like crazing, shear yielding occurred in corporation with EMA. About 15 wt% glass‐fiber (GF) reinforcement and 6 wt% EMA toughening can get a balanced behavior among strength, stiffness, and toughness for superior performance of the polymer. POLYM. ENG. SCI., 59:E144–E151, 2019. © 2018 Society of Plastics Engineers  相似文献   

3.
Maleic anhydride functionalized acrylonitrile–butadiene–styrene (ABS‐g‐MA) copolymers were prepared via an emulsion polymerization process. The ABS‐g‐MA copolymers were used to toughen polyamide 6 (PA‐6). Fourier transform infrared results show that the maleic anhydride (MA) grafted onto the polybutadiene phase of acrylonitrile–butadiene–styrene (ABS). Rheological testing identified chemical reactions between PA‐6 and ABS‐g‐MA. Transmission electron microscopy and scanning electron microscopy displayed the compatibilization reactions between MA of ABS‐g‐MA and the amine and/or amide groups of PA‐6 chain ends, which improved the disperse morphology of the ABS‐g‐MA copolymers in the PA‐6 matrix. The blends compatibilized with ABS‐g‐MA exhibited notched impact strengths of more than 900 J/m. A 1 wt % concentration of MA in ABS‐g‐MA appeared sufficient to improve the impact properties and decreased the brittle–ductile transition temperature from 50 to 10°C. Scanning electron microscopy results show that the shear yielding of the PA‐6 matrix was the major toughening mechanism. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
Acrylonitrile‐butadiene‐styrene (ABS) resins with various rubber contents were prepared by applying nickel catalyzed high‐cis polybutadiene rubber (BR9004) as toughening agent via bulk polymerization. The influence of rubber content and its characteristics on the morphology, mechanical properties, and fracture mechanisms of ABS resins were investigated. The relevant performance parameters were also evaluated and compared with a commercial injection grade resin (ABS‐8434). The results show that each synthesized resin generally contains some irregular microsized particles with a certain amount of subinclusions besides the analogous “sea‐island” morphology to ABS‐8434. The subinclusions considerably enhance the volume fraction of rubber phase; this leads to an increasing maximum loss tangent (tan δ) value, a decreasing storage modulus and glass transition temperature (Tg) of rubber phase. Besides, the higher grafting degree can not only produce a higher Tg of grafted copolymer but also improve the compatibility of rubber phase with matrix. Based on the performance measurements andfractography, the final product with a rubber content of 9.3% reveals ductile fracture behavior and excellent comprehensive properties far superior to ABS‐8434 due to combined shear yielding and massive crazing. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

5.
Star styrene–isoprene–butadiene rubber (SIBR) was synthesized with a new kind of star anionic initiator made from naphthalene lithium and an SnCl4 coupled agent. The relationship between the structure and properties of star SIBR was studied. Star block styrene–isoprene–butadiene rubber (SB‐SIBR), having low hysteresis, high road‐hugging, and excellent mechanical properties, was closer to meeting the overall performance requirements of ideal tire‐tread rubber according to a comparison of the morphology and various properties of SB‐SIBR with those of star random SIBR and natural rubber/star styrene–butadiene rubber blends. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 336–341, 2004  相似文献   

6.
The mechanical toughness of modified ABS (acrylonitrile–butadiene–styrene) alloys was evaluated using Izod impact, tensile, and compact tension tests. The modified ABS alloys contain 20 wt % of styrene–N‐phenylmaleimide (SMI) that is added to enhance the thermal resistance of the ABS. In this study, the effects of matrix composition, rubber/matrix adhesion, and rubber particle structure on the alloy toughness were investigated. Results from the tensile test and Izod impact test ranked the alloys in an order that is different from that given by KIi (stress intensity factor for crack initiation), measured from compact tension specimens. This is due to the difference in energy‐absorption characteristics for crack initiation and crack growth. The conclusion is supported by optical micrographs on the deformation zone size. The microdeformation behavior of the alloys was examined using transmission electron microscopy (TEM), which revealed different rubber‐toughening mechanisms between Izod and tensile specimens. The former contains numerous extensive crazes, while the latter, only a very few short crazes, except in regions within a few micrometers from the fracture surface. The dominant matrix deformation mechanism for the tensile specimens is believed to be shear deformation. Another interesting observation from the study is rubber particle cavitation, commonly observed in tensile specimens and Izod specimens with solid rubber particles; it did not occur in the Izod specimens containing salami‐type rubber particles. This is attributed to the salami structure that increased the straining rate for the rubber phase, leading to ductile–brittle transition of the rubber. The transition to brittle deformation of the rubber phase prevented rubber particle cavitation. The microscopic examination indicated that toughening mechanisms by the rubber particles can be very different among the mechanical tests, which should be taken into account for the rubber toughening of polymers. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1543–1553, 1999  相似文献   

7.
The performance of acrylonitrile–butadiene–styrene (ABS) core–shell modifier with different grafting degree, acrylonitrile (AN) content, and core–shell ratio in toughening of poly(butylene terephthalate) (PBT) matrix was investigated. Results show PBT/ABS blends fracture in ductile mode when the grafting degree is high, and with the decrease of grafting degree PBT/ABS blends fracture in a brittle way. The surface of rubber particles cannot be covered perfectly for ABS with low grafting degree and agglomeration will take place; on the other hand, the entanglement density between SAN and PBT matrix decreases because of the low grafting degree, inducing poor interfacial adhesion. The compatibility between PBT and ABS results from the strong interaction between PBT and SAN copolymer and the interaction is influenced by AN content. Results show ABS cannot disperse in PBT matrix uniformly when AN content is zero and PBT/ABS fractures in a brittle way. With the addition of AN in ABS, PBT/ABS blends fracture in ductile mode. The core–shell ratio of ABS copolymers has important effect on PBT/ABS blends. When the core–shell ratio is higher than 60/40 or lower than 50/50, agglomeration or cocontinuous structure occurs and PBT/ABS blends display lower impact strength. © 2006 Wiley Periodicals, Inc. J Appl PolymSci 102: 5363–5371, 2006  相似文献   

8.
The performance of glycidyl methacrylate (GMA) functionalized acrylonitrile‐butadiene‐styrene core–shell impact modifiers (R‐ABS) with varied GMA content, crosslinking degree of rubber phase, core–shell ratio, and initiator type in toughening of poly(butylene terephthalate) (PBT) was investigated. Results show that 1 wt% GMA is sufficient to induce a pronounced improvement of the impact strength of PBT and too much GMA induces the crosslinking of R‐ABS. Divinylbenzene improves the crosslinking degree of polybutadiene and decreases its cavitation ability. The brittle‐ductile transition shifts to higher R‐ABS content. When the core–shell ratio of R‐ABS is beyond 70/30, compatibilization reaction is not sufficient to retard the agglomeration of core–shell particles. R‐ABS particles with the core–shell ratio between 50/50 and 60/40 are suitable. Initiator type can influence the internal structure of R‐ABS. For R‐ABS prepared with azobisisobutyronitrile (AIBN) as initiator, big subinclusion structure decreases its toughening ability. R‐ABS prepared with redox initiator shows better toughening behavior. POLYM. COMPOS., 2013. © 2012 Society of Plastics Engineers  相似文献   

9.
Two polybutadiene‐graft‐acrylonitrile‐styrene copolymer (PBD‐g‐SAN) impact modifiers with different rubber particle size were synthesized by seeded emulsion polymerization. Acrylonitrile‐butadiene‐styrene (ABS) blends with a constant rubber concentration of 15 wt% were prepared by blending those impact modifiers and SAN resin. The major focus was the mechanical properties and deformation mechanisms of ABS blends under Izod impact test and uniaxial tension at various strain rates from 2.564 × 10?4 S?1 upto 1.282 × 10?1 S?1. By the combination of transmission electron microscope and scanning electron microscope, it was concluded that crazes and cavitation coexisted in ABS blends. The deformation mechanisms of ABS blend containing large rubber particles was rubber particles cavitation and shear yielding in the matrix including crazes, and they do not change with the strain rate. Different from ABS blend with large rubber particles, deformation mechanism of ABS with small rubber particles under tensile condition was only involved in shear yielding in the matrix and no crazes were formed. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

10.
The morphology and fracture behavior of isotactic polypropylene toughened by styrene‐ethylene‐propylene (PP/SEP) were investigated. The SEP rubber, having an average particle size of 0.2 µm, is found to be well dispersed in the PP matrix. The fracture toughness of SEP‐modified PP is greatly improved. The toughening mechanism investigation shows that a widespread crazing zone is generated in the crack tip damage zone. An intense narrow damage band in the center of crazed zone is formed. Crazing and shear yielding are found to be the dominant toughening mechanisms in PP/SEP. The crazes are initiated only by large SEP particles in the blend. The small SEP particles (< 0.3 µm) can neither cavitate nor trigger crazing. As a result, large scale shear deformation is suppressed in this blend. These findings are consistent with the notion that the crack tip plane strain constraint has to be relieved in magnitude in order for the deviatoric stress to reach a critical value for widespread shear banding.  相似文献   

11.
This study attempted to correlate morphological changes and physical properties for a high rubber content acrylonitrile–butadiene–styrene (ABS) and its diluted blends with a poly(styrene‐co‐acrylonitrile) (SAN) copolymer. The results showed a close relationship between rubber content and fracture toughness for the blends. The change of morphology in ABS/SAN blends explains in part some deviations in fracture behavior observed in ductile–brittle transition temperature shifts. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2606–2611, 2004  相似文献   

12.
In recent decades, great attention has been devoted to the toughening of isotactic poly(propylene) (PP) with elastomers such as ethylene–propylene rubber (EPR). The most important reasons for this interest are the moderate cost and favorable properties of PP. This article is focused on the role of EPR in the deformation and fracture mechanism of PP/EPR blends with different volume fractions of elastomer phase. Differential scanning calorimetry (DSC), tensile tests, and microscopy techniques were used in this study. The fracture mechanism of isotactic PP toughened by EPR (PP/EPR) has also been studied by three point bending (3‐PB) and four point bending (4‐PB) tests. Rubber particle cavitation appears to be the main mechanism of microvoid formation, although some matrix/particle debonding was observed. The investigation of the toughening mechanism shows that a wide damage zone spreads in front of the pre‐crack. Optical microscopy (OM) illustrates that, in pure PP, crazing is the only fracture mechanism, and no evidence of shear yielding is found, while in PP blends craze‐like features associated with shear yielding are observed, which have been identified as high shear localized dilatational bands. This type of deformation pattern supports a model previously proposed by Lazzeri 1 to explain the interparticle distance effect on the basis of the stabilization effect on dilatational band propagation exerted by stretched rubber particles. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3767–3779, 2003  相似文献   

13.
Graft copolymers of isoprene (Is), styrene (St), and methyl methacrylate (MMA) monomers (MIS) with typical core–shell structure were synthesized by seed emulsion polymerization and used as a toughening agent for preparation of polyvinyl chloride (PVC)/MIS blends. The St and MMA monomers were separately grafted on the cross‐linked poly‐isoprene rubber core. The toughness, sub‐micro‐morphology, and dynamic mechanical behavior of the blends were characterized by impact machine, scanning electron microscopy (SEM), and dynamic mechanical analyzer. The results showed that the impact strength of the blends was optimized when the content of MIS in PVC/MIS blends was kept at a constant value of 8 wt %, while the content of Is in MIS was 70 wt %. SEM morphologies of impact fractured surface showed that the PVC/MIS blends were typical ductile fracture because of the toughness effect of rubber particles, which correlated well with the mechanical properties. Under the same rubber content condition, the curves of the dynamic mechanical behavior of MIS toughened PVC blends appeared a more obvious rubber peak, indicating that the rubber content of MIS was higher than that of methyl methacrylate–butadiene–styrene (MBS), which explained the better toughening effect of MIS compared with MBS. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
Deformation mechanisms in postfractured high‐thermal‐resistant poly(acrylonitrile‐butadiene‐styrene) (ABS) were investigated using transmission electron microscopy (TEM) and small‐angle X‐ray scattering (SAXS). Although crazes were clearly identified by TEM, they were not detectable by SAXS. This was possibly due to a short distance between sample and imaging plate in the SAXS set‐up and invisibility of craze fibril scattering from the postfractured samples. A rhomboid‐shaped SAXS pattern was obtained from ABS samples with high ductility but with no crazes shown in the TEM micrographs. It is believed that the rhomboid‐shaped SAXS pattern was generated from matrix shear yielding. The results show that a combination of TEM and SAXS enable us to distinguish crazing and shear yielding in the postfractured ABS. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1316–1321, 2001  相似文献   

15.
The morphology and mechanical properties of polycarbonate (PC) blends with rubber‐toughened styrene–maleic anhydride copolymer materials (TSMA) were investigated and compared with the properties of blends of PC with acrylonitrile–butadiene–styrene (ABS) materials. The PC/TSMA blends showed similar composition dependence of properties as the comparable PC/ABS blends. Polycarbonate blends with TSMA exhibited higher notched Izod impact toughness than pure PC under sharp‐notched conditions but the improvements are somewhat less than observed for similar blends with ABS. Since PC is known for its impact toughness except under sharp‐notched conditions, this represents a significant advantage of the rubber‐modified blends. PC blends with styrene–maleic anhydride copolymer (SMA) were compared to those with a styrene–acrylonitrile copolymer (SAN). The trends in blend morphology and mechanical properties were found to be qualitatively similar for the two types of copolymers. PC/SMA blends are nearly transparent or slightly pearlescent. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1508–1515, 1999  相似文献   

16.
Notch sensitivity, the effect of a notch radius on the impact behavior of polycarbonate and rubber‐toughened polycarbonate, is investigated by using a model based on the slip‐lines field theory. Impact strength, determined by the Charpy impact test, was found to increase drastically with an increasing notch radius for pure polycarbonate, whereas the increase of impact strength with increased notch radius was not as extreme for rubber‐toughened polycarbonate. These results indicate that the inclusion of rubber particles reduces notch sensitivity. An examination of fracture surfaces reveals that cracks were initiated by internal crazing at some distance from the notch tip for specimens with blunt notches. For pure polycarbonate, the impact strength is found to have a linear relationship with the square of the notch radius, which is in good agreement with that predicted by the proposed model. However, for rubber‐toughened polycarbonate, the linear relationship broke down as the notch radius increased due to the enhanced toughening effect. The proposed model can be applied to clearly explain the notch sensitivity of ductile polymers which exhibit large plastic yielding around the notch tip. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3115–3121, 2003  相似文献   

17.
Blends of propylene–ethylene block copolymer (PEB) and propylene homopolymer (PP) were prepared to give various rubber contents (4–20 wt %). By diluting the PEB with PP with molecular weight equal to that of the PEB matrix, molecular characteristics of all the blends were kept constant. The rubber particle size and size distribution of all the blends were almost constant, so that the interparticle distance decreased with increased rubber content. According to the observation of the fracture behavior at ?20°C, a brittle to ductile transition was found at the rubber content of 16 wt %. Microdeformation behavior of the blends was investigated in the region of brittle to ductile transition by using transmission electron microscopy. In the case of the brittle sample with low rubber content, crazing and voiding were observed. Whereas even in the ductile sample with high rubber content, crazing certainly took place before shear yielding. The origin of ductile fracture could possibly be attributed to the relaxation of strain constraint by the microvoids contained in the craze. © 1993 John Wiley & Sons, Inc.  相似文献   

18.
The performances of rubber‐toughened polymers like acrylonitrile–butadiene–styrene (ABS) are strongly affected by the type and amount of rubber phase. Characterization of rubber phase is an effective method to predict and control the physical and mechanical behaviors of ABS materials. In this work, different methods have been employed to determine the amount of rubber phase in ABS polymers. The first method was based on thermogravimetry using a particular step degradation of the polymer. In the second method, characteristic absorption bands in the Fourier transform infrared spectra were used to make a calibration curve to determine the rubber content of unknown ABS samples. The third method was based on variation of heat capacity of ABS polymers with increasing the rubber phase content. In the fourth method, a two‐step solvent extraction followed by centrifuging was used to separate the rubber particles of different ABS samples. Separation of hardened rubber particles was used to study the size and size distribution of rubber particles. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
Maleic anhydride functionalized acrylonitrile–butadiene–styrene copolymer (ABS‐g‐MA) was used as an impact modifier of polyamide 6 (PA6). Epoxy resin was introduced into PA6/ABS‐g‐MA blends to further improve their properties. Notched Izod impact tests showed that the impact strength of PA6/ABS‐g‐MA could be improved from 253 to 800 J/m with the addition of epoxy resin when the ABS‐g‐MA content was set at 25 wt %. Differential scanning calorimetry results showed that the addition of epoxy resin made the crystallization temperature and melting temperature shift to lower temperatures; this indicated the decrease in the PA6 crystallization ability. Dynamic mechanical analysis testing showed that the addition of epoxy resin induced the glass‐transition temperature of PA6 and the styrene‐co‐acrylonitrile copolymer phase to shift to higher temperatures due to the chemical reactions between PA6, ABS‐g‐MA, and epoxy resin. The scanning electron microscopy results indicated that the ABS‐g‐MA copolymer dispersed into the PA6 matrix uniformly and that the phase morphology of the PA6/ABS‐g‐MA blends did not change with the addition of the epoxy resin. Transmission electron microscopy showed that the epoxy resin did not change the deformation mechanisms of the PA6/ABS‐g‐MA blends. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
Polybutadiene‐g‐poly(styrene‐co‐acrylonitrile) (PB‐g‐SAN) impact modifiers with different polybutadiene (PB)/poly(styrene‐co‐acrylonitrile) (SAN) ratios ranging from 20.5/79.5 to 82.7/17.3 were synthesized by seeded emulsion polymerization. Acrylonitrile–butadiene–styrene (ABS) blends with a constant rubber concentration of 15 wt % were prepared by the blending of these PB‐g‐SAN copolymers and SAN resin. The influence of the PB/SAN ratio in the PB‐g‐SAN impact modifier on the mechanical behavior and phase morphology of ABS blends was investigated. The mechanical tests showed that the impact strength and yield strength of the ABS blends had their maximum values as the PB/SAN ratio in the PB‐g‐SAN copolymer increased. A dynamic mechanical analysis of the ABS blends showed that the glass‐transition temperature of the rubbery phase shifted to a lower temperature, the maximum loss peak height of the rubbery phase increased and then decreased, and the storage modulus of the ABS blends increased with an increase in the PB/SAN ratio in the PB‐g‐SAN impact modifier. The morphological results of the ABS blends showed that the dispersion of rubber particle in the matrix and its internal structure were influenced by the PB/SAN ratio in the PB‐g‐SAN impact modifiers. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2165–2171, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号