首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four-blade static mixer was designed for inline mixing of Newtonian fluids at Reynolds numbers from 700 to 6800. The mixer consists of four equally spaced blades mounted on cylindrical housing with 45° rotation relative to the circumference. It was tested in three different compartments of 6, 8, and 10 mixing elements; each element rotated 45° relative to the adjacent one. Multipoint sampling was used to measure concentration downstream the mixer. The mixing quality was measured by the coefficient of variance (CoV). The CoV decreases as the energy input per unit mass increases. This effect is more pronounced when the number of mixing elements increases. For the case of 10 mixing elements, a good mixing performance (typically more than 95% mixedness or CoV < 0.05) achieved, although a marginally good mixing performance could also be achieved by eight mixing elements. The friction factors were correlated as f = C1/Re + C2/Ren with an average deviation of ±10% from experimental data. Furthermore, experimental friction factors were compared with existing models. For a wide range of Reynolds numbers, the friction factors are apparently smaller than those from SMV, KMX, and baffle-type static mixers. © 2018 American Institute of Chemical Engineers AIChE J, 65: 1126–1133, 2019  相似文献   

2.
The flow and mixing behavior of two miscible liquids has been studied in an innovative static mixer by using CFD,with Reynolds numbers ranging from 20 to 160. The performance of the new mixer is compared with those of Kenics, SMX, and Komax static mixers. The pressure drop ratio(Z-factor), coefficient of variation(CoV), and extensional efficiency(α) features have been used to evaluate power consumption, distributive mixing, and dispersive mixing performances, respectively, in all mixers. The model is firstly validated based on experimental data measured for the pressure drop ratio and the coefficient of variation. CFD results are consistent with measured data and those obtained by available correlations in the literature. The new mixer shows a superior mixing performance compared to the other mixers.  相似文献   

3.
Laminar heat and mass transfer are central to a wide range of industrial processes, encompassing (thermal) processing of viscous fluids, compact equipment for process intensification, and emerging microfluidic devices. Many of these applications incorporate the “static‐mixing principle” (stirring of a throughflow by internal elements) for mixing and heat‐transfer enhancement. Investigations on static mixers primarily concern numerical simulations. Experimental studies, on the other hand, are relatively rare and to date restricted to visualization of mixing patterns or integral quantities as for example, pressure drop and heat‐transfer coefficients. The present study expands on this by quantitative experimental analysis of three‐dimensional (3‐D) flow fields and streamline patterns in a representative static mixer using 3‐D particle‐tracking velocimetry. This necessitates tackling of (internal) refractions and reflections caused by the complex mixer geometry. Comparison of experimental results with numerical predictions reveals a good agreement. © 2012 American Institute of Chemical Engineers AIChE J, 59: 1746–1761, 2013  相似文献   

4.
This article addresses design modification to a flat-blade static mixer to enhance mixing performance. The static mixer elements used in this work consist of four blades with curvature made to intensify turbulent-like flow, while reducing the pressure drop. The blades were mounted on a cylindrical housing with 45° rotation relative to the axial direction. The mixer assembly was used in three different arrangements of 8, 10, and 14 elements for a range of Reynolds number between 600 and 7,000. The coefficient of variance (COV) of samples was used to measure the mixing quality. The curved-blade mixer provides considerable improvement in mixing quality compared with the flat-blade mixer and comparable to the SMX mixer. Compared with the flat-blade static mixer, the new design reduces the COV by up to about 50%. This effect is more pronounced when the number of mixing elements increases. Furthermore, the friction factors for the modified mixer, obtained at a wide range of Reynolds number, were apparently smaller than those for the flat-blade, SMX, and SMV mixers. The correlation presented for the friction factor, when all mixer arrangements and aspect ratios were considered, supports the experimental data with ±15% deviation.  相似文献   

5.
Operations to reclaim mature fine tailings (MFT) ponds involve flocculation using high‐molecular‐weight polymers, for which inline static mixers are suited. Three different commercial static mixers were utilized to determine mixing parameters corresponding to optimal dewatering performance of flocculated MFT. MFT was treated with polymer solution under different mixing conditions. The dewatering rates passed through a peak with increasing mean velocity, V and Reynolds number, Re of the fluid. The greater the number of mixer elements, the lower the V and Re at which the peak dewatering rate occurred. Mixing parameters such as G‐value, residence time, and mixing energy dissipation rate of the most rapidly dewatering flocculated MFT were dependent on mixer type and setup. In contrast, peak dewatering rates converged when scaled with respect to specific mixing energy, E, demonstrating that E is a suitable scale‐up parameter for inline static mixing to produce optimally dewatering MFT. © 2015 American Institute of Chemical Engineers AIChE J, 61: 4402–4411, 2015  相似文献   

6.
Kenics混合器混合性能的模拟研究   总被引:2,自引:0,他引:2  
王丽  张沛  姬宜朋 《塑料》2006,35(3):87-93
利用Fluent有限元分析软件计算了流体流过Kenics混合器过程中的应变速率,进而分析混合元件转速与旋转式Kenics混合器混合效率的关系,以及混合元件与机筒间隙对静态和旋转式Kenics混合器对混合效率的影响。模拟分析结果表明:旋转式Kenics混合器混合效率随转速增加而提高;减小混合元件与机筒间间隙有利于增加静态Kenics混合器混合效率,但间隙的减小对旋转式Kenics混合器混合效率的影响却很小。  相似文献   

7.
Mixing and dispersion strategies for the inline production of amine flotation reagents is explored for 2.54 cm and 5.08 cm process lines and flow rates comparable to current commercial production systems. Through video analysis of injection into a clear pipe, the dispersion effectiveness was visualized and quantified as a variability intensity, and compared for natural‐stream turbulence, orifice‐plate and structured static mixing elements. The results suggest that a single point of energy dissipation was more effective in dispersing the injected amine, with the orifice plates consistently yielding fully‐dispersed reagent solutions. The results suggest that while a structured mixing device with 6 elements did improve dispersion relative to an empty pipe, more mixing elements or a smaller characteristic length (i.e. 2.54 cm mixer) would be better suited to this specific application.  相似文献   

8.
Inspired by the partitioned pipe mixer (PPM), a barrier‐embedded partitioned pipe mixer (BPPM) is designed and analyzed using a numerical simulation scheme. The BPPM is a static mixer, composed of orthogonally connected rectangular plates with a pair of barriers, which divide, stretch, and fold fluid elements, leading to chaotic mixing via the baker's transformation. The aspect ratio of the plate (α) and the dimensionless height of the barrier (β) are chosen as design parameters to conduct a parameter study on the mixing performance. The flow characteristics and mixing performance are analyzed using the cross‐sectional velocity vectors, Poincaré section, interface tracking, and the intensity of segregation. The results indicate that several designs of the BPPM significantly enhance the PPM's mixing performance. The best BPPMs are identified with regard to compactness and energy consumption. © 2017 American Institute of Chemical Engineers AIChE J, 64: 717–729, 2018  相似文献   

9.
In order to illustrate the use of CFD in providing an understanding of mixing processes, three examples, mixing in a pipe, homogenization with a static mixer and flow in a mixing vessel with a Rushton turbine, are discussed and compared with experimental results. Special attention is focussed on the resultant concentration distribution, which is closely linked to turbulent properties. A semi-empirical model is presented for a quantitative prediction of the initial turbulent conditions. Using special numerical techniques a mixing vessel with wall-separated baffles, which represents a problem generally regarded as beyond the capabilities of numerical analysis, can be simulated.  相似文献   

10.
Mixing and transport of a cohesive powder are experimentally characterized in a laboratory-scale Bohle Bin blender. The cohesive powder is a blend of Avicel, lactose, and magnesium stearate (MgSt). The effects of vessel fill level, rotational speed, mixing time, and the presence of baffles on mixing are characterized by quantifying MgSt distribution using Near Infrared (NIR) spectroscopy. Results show that the relative standard deviation (RSD) decays faster (on a per revolution basis) and further (lower plateau) at higher rotational speeds. This result indicates a dependence of mixing of cohesive materials on shear. We find that fill level has a strong impact on mixing rate; the higher the fill level, the slower the mixing. Segregated regions are observed at the center of the blender for high fill levels at low rotational speeds. The presence of baffles seems to hinder mixing; the RSD decays are slower and leveled at a higher plateau when baffles are used. Concentration profiles data shows that, at high fill levels, baffles promoted the formation of segregated region at the center of the mixer.  相似文献   

11.
Deterministic models of physicochemical, mathematical, and computational sciences were used for modeling and simulation of emulsion homopolymerization process of styrene with baffles into tubular reactor (TR) as static mixer. Modeling and simulation were approximate to steady state, cylindrical one‐dimensional model, fully developed laminar plug flow, and they were solved with finite volume method and programmed with Fortran language. Also, the Smith‐Ewart model was considered to estimate the monomer conversion and Arrhenius chemical kinetics was considered as laminar finite‐rate model to compute chemical source. The experimental‐inductive and mathematical‐deductive methods were applied for obtaining mass balance results and properties characterization. The objective is to model, to simulate, and to analyze the emulsion polymerization reactor performance with internal‐inclined angular baffles, and to compare with continuous TR in variable reaction temperature. The predictions were validated with experimental results for the isothermic and TR, with a good concordance. The results in no isothermal conditions without and with baffles were better than in isothermal conditions without and with baffles in relation to the desired properties. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2572–2581, 2006  相似文献   

12.
In this work, a general multidimensional population balance (PB) model is developed to predict the coating volume distribution on polydisperse particles as a function of time during particle coating in a paddle mixer. The model adopts a compartmental approach to account for coating variation caused by particle flow heterogeneity. Simulations show that for a realistic range of seed particle size polydispersity and coating mass applied, the coating volume distribution depends on the growth rate exponent and seed particle size distribute on, with the coating volume coefficient of variance (CoV) approaching an asymptotic value as the coating‐to‐particle volume ratio increases. These effects cannot be predicted by simpler one‐dimensional models. However, the full two‐dimensional PB and simpler one‐dimensional models such as Mann's equation do predict similar sensitivity of coating volume CoV to the variation in the compartment model parameters, i.e., to changes in the particle mixing behavior in the vessel. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

13.
Static mixers, often referred to as motionless mixers, are in-line mixing devices that consist of mixing elements inserted into a length of pipe. Most of the experimental works in this field have concentrated on establishing design guidelines and pressure drop correlations. Due to experimental difficulties, few articles have been published on the investigation of the flow and mixing mechanisms. In this work, a Kenics KMX static mixer was utilized to study concentration and residence time distribution (RTD) and effect of Reynolds number on mixing. The static mixer had six mixing elements arranged in-line along the length of the tube, and the angle between two neighboring elements was 90°. The length of the mixer was 0.98 m with internal and external diameters of 5.0 cm and 6.0 cm, respectively. The main continuous fluid was water, and NaCl solution was used as a tracer. All experiments were conducted with three replications at three Reynolds numbers, Re = 1188.71, 1584.95, and 1981.19. A dispersion model was used to model the RTD data. The experimental results were compared with the model results and reasonable agreement was achieved.  相似文献   

14.
A finite volume method is used to solve a determinist mathematical model and to analyze the performance of an alternative design for an emulsion polymerization reactor with internal angular baffles as static mixer. It is assumed to be a steady‐state, cylindrical one‐dimensional model having a fully developed laminar plug flow. The Smith‐Ewart model is used to estimate the monomer conversion, the kinetics is of Arrhenius type, and laminar finite‐rate model is assumed to compute chemical source terms. The objective of this work is to develop the finite volume method for the new emulsion polymerization tubular reactor with internal angle baffles. The performance of the alternative reactor is compared with continuous tubular reactor with constant reaction temperature. The simulations were validated with experimental results for the isothermal and tubular reactor, with a good concordance. The results with baffles were better than without baffles in relation to desired properties such as particle size and viscosity. The problem is sufficiently well solved by finite volume method. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 6037–6048, 2006  相似文献   

15.
混合元件数对SK型静态混合器流场特性的影响   总被引:4,自引:2,他引:2       下载免费PDF全文
龚斌  包忠平  张春梅  吴剑华 《化工学报》2009,60(8):1974-1980
以SK型静态混合器为对象,运用激光多普勒测速仪对混合器内流场进行测量分析,研究混合元件数对混合器内速度分布和湍动性能影响。结果表明:在扭旋叶片作用下,流体在混合器内的速度会重新分布,湍动会被强化,这一过程主要在前3个混合元件中实现,且湍动逐渐增加,但增加速度逐渐减弱,第1个混合元件强化作用最为显著,进入第4个混合元件后基本达到稳定;当混合叶片数量超过3个以后,对流体湍动的强化基本达到混合器强化能力的极限,继续增加元件数量不能提高流体的湍动程度,但可以维持这种湍动。  相似文献   

16.
Passive micromixers are preferred over active mixers for many microfluidic applications due to their relative ease in integration into complex systems and operational flexibility. They also incur very low cost of manufacturing. However, the degree of mixing is comparatively low in passive mixers than active mixers due to the absence of disturbance in the flow by external forces and the inherent laminar nature of microchannel flows. Various designs of complex channel structures and three-dimensional geometries have been investigated in the past to obtain an efficient mixing in passive mixers. But the studies on mixing enhancement with simple planar geometries of passive mixers have been few and limited. The present work aims to investigate the possibility of mixing enhancement by employing simple planar type designs, such as T-mixer and T-T mixer with cylindrical elements placed in the mixing channel. The mixing performance has been evaluated in the Reynolds number range of 6 to 700. Numerical results have shown that T-T mixer with cylindrical elements performed significantly well and obtained very good mixing quality over basic T-mixer for the entire range of Reynolds number (6 to 700). The device has also shown better mixing as compared to basic T-T mixer and T-mixer with cylindrical elements. A larger pair of vortices formed in the stagnation area due to the presence of a cylindrical element in the junction. Cylindrical elements downstream caused significant enhancement in mixing due to splitting and recombining action. The size of the cylindrical element in the T-T mixer has been optimized to obtain better mixing performance of the device. Remarkable improvement in mixing quality by T-T mixer with cylindrical elements has been obtained at the expense of small rise in pressure drop as compared to other passive designs considered in this study. Therefore, the current design of T-T mixer with cylindrical elements can act as an effective and simple passive mixing device for various micromixing applications.  相似文献   

17.
Static or motionless mixers have received wide application in chemical and allied industries due to their low cost and high efficiency. The pressure drop and mixing behaviour of such mixers have been widely studied. However, the available information for non‐Newtonian fluids is scanty. The results of pressure drop and mixing studies conducted with a locally made motionless mixer (MALAVIYA mixer) and four non‐Newtonian fluids—aq. CMC, PVA, and PEG solutions are reported in this article. The new mixer causes less pressure drop compared to some of the commercial mixers. Mixing behaviour of the unit is more closer to plug flow and a two‐parameter model correlates the dispersion data.  相似文献   

18.
A new static mixer Cross-over-Disc has been invented to strip off the boundary layer and to make strong radial mixing. The pressure drop of Cross-over-Disc is 12-26 times as large as that of empty pipe with equivalent diameter and length. The mixing performance of Cross-over-Disc with 14 elements has been investigated in the viscosity range of 190–250 Pa·s by decoloration method, and the gray analysis of images shows that mixing inhomogeneity is about 7.5% and 9.4% for the mixing ratio of 5:1 and 10:1, respectively. Furthermore, mixing inhomogeneity for a combination of static mixing elements (four from Cross-over-Disc and three pairs from Sulzer-type) can be decreased to 2.1%–3.1% within a reasonable range of pressure drop.  相似文献   

19.
A detailed Lagrangian analysis of partially mixed structures in an SMX static mixer is presented, with emphasis on laminar flows with Reynolds numbers between 1 and 100. The distribution of a small amount of equal‐viscosity additive is examined based on computing the trajectories of passive tracer particles through the mixer. Three radial positions (one centerline and two off‐center) are chosen for injection and the mixing patterns are compared in order to investigate the effect of injection location on mixing. Mixing measures, such as the decrease in the variation coefficient with axial distance, and the increase in the average rate of stretching, are discussed in order to quantify mixing performance. It is found that mixing rates for the centerline injections are larger than for the off‐center injection positions investigated. The presence of self‐similarity in the stretching field and the mixing patterns, and the exponential decrease in variation coefficient with increasing axial distance provides evidence for chaotic mixing behavior in this device.  相似文献   

20.
For the nitrogen oxide removal processes, high performance gas mixer is deeply needed for the injection of NH3 or O3. In this study, a new type of double swirl static mixer in gas mixing was investigated using computational fluid dynamics (CFD). The results obtained using Particle Image Velocimetry (PIV) correlated well with the results obtained from simulation. The comparisons in pressure loss between the experimental results and the simulation results showed that the model was suitable and accurate for the simulation of the static mixer. Optimal process conditions and design were investigated. When L/D equaled 4, coefficient of variation (COV) was <5%. The inlet velocity did not affect the distributions of turbulent kinetic energy. In terms of both COV and pressure loss, the inner connector is important in the design of the static mixer. The nozzle length should be set at 4 cm. Taking both COV and pressure loss into consideration, the optimal oblique degree is 45°. The averaged kinetic energy changed according to process conditions and design. The new static mixer resulted in improved mixing performance in a more compact design. The new static mixer is more energy efficient compared with other SV static mixers. Therefore, the double swirl static mixer is promising in gas mixing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号