首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
The optical fiber probe has been for the first time applied to investigate the hydrodynamics and gas‐phase distribution at high gas/liquid ratios in a two‐phase flow monolith bed with 0.048 m diameter and 400 cpsi. Local hydrodynamic parameters including gas holdup, bubble frequency, bubble velocity, and bubble length in single channels were measured by 16 inserted single‐point optical fiber probes within the bed under a nozzle as the liquid distributor. The following findings are reported. (1) The optical fiber probe can be used as an efficient and convenient technique for measuring local hydrodynamic parameters inside the channels of a monolith bed; (2) within the range of high gas/liquid ratios under which experiments were conducted, churn flow regime occurred. In this regime, the monolith bed radial distribution of gas holdup, bubble frequency, bubble velocity, and bubble length is nonuniform in nature. © 2013 American Institute of Chemical Engineers AIChE J 60: 740–748, 2014  相似文献   

2.
The distributions of the three phases in gas–liquid–solid circulating fluidized beds (GLSCFB) were studied using a novel measurement technique that combines electrical resistance tomography (ERT) and optical fibre probe. The introduction of gas into a liquid–solid circulating fluidized bed (LSCFB), thus forming a GLSCFB, caused the increase of solids holdup due to the significantly decreased available buoyancy with the lower density of the gas, even with a somewhat increased liquid velocity due to the decreased liquid holdup giving space for the gas holdup. The gas passed through the riser in the form of bubbles, which tended to flow more through the central region of the riser, leading to more radial non‐uniformity in radial holdup of the phases. The gas velocity has the most significant effect on the gas phase holdup. While the gas velocity also has an obvious effect to the solids holdups, the liquid flow rate had a much more considerable effect on the phase holdups. The solids circulation rate also had a significant effect on the phase holdups, with increasing solids circulation rate causing much more increased solids holdup in the central region than close to the wall. A correlation was developed for the relative radial distributions of solids holdup in GLSCFB, as such radial profiles were found similar over a wide range of operating conditions, like those in a typical gas–solid circulating fluidized beds (GSCFB). Finally, the axial solids profiles in a GLSCFB was found to be much closer to those in an LSCFB which are very uniform, than those found in a GSCFB which are less uniform and sometime having a S shape. Water was used as the continuous and conductive phase, air was the gas phase and glass bead and lava rock particles were used as the solid and non‐conductive phase.  相似文献   

3.
The axial and radial distributions of solid and gas holdups were investigated in an air‐water‐glass bead circulating fluidized bed (GLSCFB) using a new ultrasonic technique, with a new method based on signal fluctuations. The cross‐sectional averaged gas and solid holdups measured at two axial positions appear to be similar at all studied operating conditions. The radial non‐uniformity decreases with increasing liquid velocity but does not change with an increasing solid circulating rate. The radial distribution of gas holdup was more uniform for 1.3 mm beads than for 433 µm glass beads.  相似文献   

4.
Models commonly used in literature are evaluated versus 696 data points to predict the pressure drop of gas/non‐Newtonian power‐law fluids flow in horizontal pipes. Suitable models are recommended. A new correlation is developed by ignoring the pressure drop across the gas slug and adopting the liquid slug holdup of gas/non‐Newtonian fluid flow into the homogeneous model. The theoretical curves can capture the test data trends and the overall agreement of predicted values with experimental data is sufficient to be practically applied in industry.  相似文献   

5.
H. Jin  Y. Qin  S. Yang  G. He  Z. Guo 《化学工程与技术》2013,36(10):1721-1728
The effects of operating conditions on radial variation of gas holdups, bubble swarm rising velocity, and Sauter mean diameter were investigated in a bubble column reactor under elevated pressures using a conductivity probe method. Air served as gas phase and tap water as liquid phase with varying gas velocity and pressure. All three parameters increased constantly with higher superficial gas velocity. Maximum holdup, velocity, and Sauter mean diameter were found at the center of the cross section. Two different cases for Sauter mean diameter distribution were observed. The gas holdups increase continuously with higher system pressure, but decrease for bubble swarm rising velocity and Sauter mean diameter. According to experimental results, an empirical correlation of the gas holdup profiles is presented.  相似文献   

6.
Sand holdup is one of the most important hydrodynamic parameters that is needed for performance estimation, design, operation and control of oil‐gas‐sand multiphase production and pipeline transportation systems. The performance of oil‐gas‐sand multiphase flow can be reliably evaluated by measuring the sand holdup in such oil‐gas‐sand multiphase production and pipeline transportation systems. In the present work, a local sand holdup has been measured under conditions analogous to the horizontal oil‐gas‐sand three‐phase slug flow in pipelines. Accurate local sand particle holdup measurements were performed by the digital imaging technique. The results revealed the influence of operating conditions such as gas and liquid velocities and sand particle loading on the distribution of the local sand particle holdup in the horizontal air‐water‐sand multiphase slug flow pipe. Explanations for the observed trends are provided, shedding light on the general structures and mechanisms of the distribution of the local sand holdup in a horizontal oil‐gas‐sand three‐phase slug flow. Such information on the horizontal air‐water‐sand three‐phase slug flow mechanisms are essential to advance the mechanistic approach for predicting local sand holdup distribution and the subsequent effect on sand deposition during multiphase petroleum production and transfer operations.  相似文献   

7.
气液两相流段塞流持气率快关阀法优化设计   总被引:2,自引:1,他引:1       下载免费PDF全文
快关阀法(quick closing valve,QCV)是气液两相流流动实验中常用持气率标定手段。特别是由于段塞流中气塞与液塞表现为随机可变流动特性,不合理的快关阀间距及截取次数选择将会导致持气率测量误差增大。提出了一种持气率快关阀法优化设计方案。首先,采用环形电导传感器上下游阵列信号计算流体相关流速,根据相关测速结果提取上游传感器信号对应流动工况的气塞与液塞间隔长度序列,采用Maxwell方程提取液塞中含泡持气率;在此基础上,再依气塞在管道内占比模拟计算不同快关阀间距时捕获的持气率波动序列。通过分析持气率序列波动,从统计学角度指出了95%置信度及5%允许误差情况下所需最低截取次数。最后,在快关阀门间距为1.55 m的条件下对段塞流所需截取次数进行了实验验证。通过对快关阀法持气率测量误差进行统计分析,证明了设置两个快关阀门间距的充分条件。  相似文献   

8.
Experiments were carried out to investigate the liquid flow distribution at high gas/liquid ratios in a cold model monolith bed of a 0.048 m diameter with 62 cells per cm2.Three types of distributor for the liquid distribu-tion were used to evaluate their distribution performance.Local liquid saturation in individual channels was meas-ured using 16 single-point optical fiber probes mounted inside the channels.The results indicate that 1) The optical fiber probe technique can measure phase distribution in the monolith bed;2) Liquid saturation distribution along the radial direction of the monolith bed is not uniform and the extent of non-uniformity depends on the distributor de-sign and phase velocities;and 3) The tube array distributor provides superior liquid distribution performance over the showerhead and nozzle distributors.  相似文献   

9.
The hydrogenation of 2‐ethylanthraquinone (EAQ) to 2‐ethylanthrahydroquinone (EAHQ) was carried out under Taylor flow in single square channel monolith reactors. The two opening ends of opaque reaction channel were connected with two circular transparent quartz‐glass capillaries, where Taylor flow hydrodynamics parameters were measured and further used to obtain practical flow state of reactants in square reaction channels. A carefully designed gas‐liquid inlet mixer was used to supply steady gas bubbles and liquid slugs with desired length. The effects of various operating parameters, involving superficial gas velocity, superficial liquid velocity, gas bubble length, liquid slug length, two‐phase velocity and temperature, on EAQ conversion were systematically researched. Based on EAQ conversion, experimental overall volumetric mass transfer coefficients were calculated, and also studied as functions of various parameters as mentioned earlier. The film model, penetration model, and existing semi‐empirical formula were used to predict gas‐solid, gas‐liquid, and liquid‐solid volumetric mass transfer coefficients in Taylor flow, respectively. The predicted overall volumetric mass transfer coefficients agreed well with the experimental ones. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

10.
The influence of tortuosity and fluid volume fractions on trickle‐flow bed performance was analyzed. Hydrodynamics of the gas‐liquid downward flow through trickle beds, filled with industrial trilobe catalysts, were investigated experimentally and numerically. The pressure drop and liquid holdup were measured at different gas and liquid velocities and in two different loading methods, namely, sock and dense catalyst loading. The effect of sharp corners on hydrodynamic parameters was considered in a bed with rectangular cross section. The reactor was simulated, considering a three‐phase model, appropriate porosity function, and interfacial forces based on the Eulerian‐Eulerian approach. Computational fluid dynamics (CFD) simulation results for pressure drop and liquid holdup agreed well with experimental data. Finally, the velocity distribution in two types of loading and the effect of bed geometry in CFD results demonstrated that pressure drop and liquid holdup were reduced compared to a cylindrical one due to high voidage at sharp corners.  相似文献   

11.
The hydrodynamic performance of three internal airlift reactor configurations was studied by the Eulerian–Eulerian k–ε model for a two‐phase turbulent flow. Comparative evaluation of different drag and lift force coefficient models in terms of liquid velocity in the riser and downcomer and gas holdup in the riser was highlighted. Drag correlations as a function of Eötvös number performed better results in comparison to the drag expressions related to Reynolds number. However, the drag correlation as a function of both Reynolds and Eötvös numbers fitted well with experimental results for the riser gas holdup and downcomer liquid velocity in configurations I and II. Positive lift coefficients increase the liquid velocity and decrease the riser gas holdup, while opposite results were obtained for negative values. By studying the effects of bubble size and their shape, the smaller bubbles provide a lower liquid velocity and a gas holdup. The effects of bubble‐induced turbulence and other non‐drag closure models such as turbulent dispersion and added mass forces were analysed. The gas velocity and gas holdup distributions, liquid velocity in the riser and downcomer, vectors of velocity magnitude and streamlines for liquid phase, the dynamics of gas holdup distribution and turbulent viscosity at different superficial gas velocities for different reactor configurations were computed. The effects of various geometrical parameters such as the draft tube clearance and the ratio of the riser to the downcomer cross‐sectional area on liquid velocities in the riser and the downcomer, the gas velocity and the gas holdup were explored. © 2011 Canadian Society for Chemical Engineering  相似文献   

12.
微通道内气-液弹状流动及传质特性研究进展   总被引:3,自引:2,他引:1       下载免费PDF全文
尧超群  乐军  赵玉潮  陈光文  袁权 《化工学报》2015,66(8):2759-2766
气-液弹状流,又称Taylor流,是一种以长气泡和液弹交替形式流动的流动形态。微通道内气-液弹状流因其气泡与液弹尺寸分布均一、停留时间分布窄、径向混合强等优点,是一种适于强化气-液反应的理想流型。本文首先介绍了微通道内气泡的生成机理、气泡和液弹长度,以及气泡生成阶段的传质特征。其次系统综述了主通道中弹状流动及传质过程的研究进展,包括气泡形状与液膜厚度、液弹内循环和泄漏流特征、气-液传质系数的测量与预测,以及物理与化学吸收过程中的传质特性等方面内容。最后阐述了当前研究的不足并展望了气-液弹状流的研究方向。  相似文献   

13.
To characterize slug flows in annuli channels and highlight the effect of the eccentricity on the flow behaviors, experiments were conducted in two horizontal annuli setups (a) concentric and (b) fully eccentric using air and water as the testing fluids. The range of air and water superficial velocities investigated were 0.45–3.49 m/s and 0.15–2.77 m/s, respectively. Slug parameters measured using conductance probes designed for this study include slug length, translational velocity, slug frequency, and slug holdup. It is found that the slug translational velocity is unaffected by the annulus eccentricity; however, parameters including slug frequency, slug holdup, and slug lengths have a higher value in the fully eccentric annulus when compared with the concentric one. We introduced a new definition of hydraulic diameter, which reconciles the correlation between the dimensionless mean slug length and the mixture velocity of the horizontal annuli with different setups.  相似文献   

14.
The influence of liquid maldistribution at the top of the packing on flow characteristics in packed beds of gas and liquid cocurrent downflow (trickle beds) is experimentally investigated. Particular attention is paid to the effect of gas and liquid flow rates on flow development. Tests are made in the trickling and pulsing flow regimes. A uniform, a half-blocked and a quarter-blocked liquid distributor is tested. Packings of various sizes and shapes are employed. Data are presented on pressure drop and liquid holdup as well as trickling to pulsing flow transition. Diagnosis of radial and axial liquid distribution is made by means of conductance probes. The effects of liquid foaming, bed pre-wetting, top-bed material, and blockage midway the bed on liquid distribution are also examined. Overall, liquid waves in the pulsing flow regime have a beneficial effect, promoting uniform liquid distribution in the bed cross section.  相似文献   

15.
通过对气流两相在填料床反应器并流向下流动情况的分析,提出了计算如气、液两流体在富液和富气脉冲柱内的速度、持流量及脉冲柱长度等流体力学参数的数学模型方程,为使模型方程封闭,根据实验数据提出三个经验关联式关联表观脉冲速度、脉冲频率和平均持流量三个宏观平均参数,模型计算结果与分析结论吻合良好。  相似文献   

16.
水平管段塞流持液率的波动特性   总被引:2,自引:2,他引:0  
气液两相段塞流是液塞和长气泡在空间和时间上的交替,在流动过程中表现出间歇性和不稳定性.今对水平管中段塞流持液率的波动特性进行了分析.结果表明:在同一折算液速下,随着折算气速的增加,段塞单元的平均持液率和液膜持液率先快速下降再缓慢下降,而液塞持液率先缓慢下降再快速下降.段塞流持液率的概率密度分布为双峰分布,高持液率峰对应于液塞区,低持液率峰对应于液膜区;概率密度函数中较完好的峰所对应的持液率与光滑分层液膜区和液塞区的平均持液率相一致.  相似文献   

17.
利用计算流体力学(CFD)数值模拟方法.采用Euler法双流体模型研究了表观气速对气液两相气升式环流反应器的液体循环速率和气含率的影响.实验结果与数值模拟结果吻合较好.结果表明.气含率和液体速率在反应器内分布不均匀,气含率在相同的径向位置变化很小,液体速率随着表观气速的增加而增加.  相似文献   

18.
New experimental data for air–water flow in a horizontal square cross‐section channel (H = 24.25 mm) is presented, including data on liquid hold‐up, gas and liquid velocities, and wave velocities and frequencies. For the majority of gas and liquid flow rates studied, the regime observed was pseudo‐slug. Using visualization studies it was possible to identify wavy‐stratified and pseudo‐slug flows. For the pseudo‐slug regime new correlations were obtained for liquid hold‐up, for gas and liquid velocities as a function of the ratio between gas and liquid mass flow rates, and for the frequency of roll‐waves as a function of gas and liquid mass flow rates.  相似文献   

19.
Gas holdup and liquid circulation of one conventional draft tube and three different convergence‐divergence draft tubes in an internal loop airlift reactor were investigated. Experiments were carried out in two‐phase systems with air‐water and air‐CMC (carboxyl methyl cellulose) solution and three‐phase system with air‐water‐resin particles. The two‐phase drift‐flux model was used to estimate gas holdup for three‐phase Newtonian and two‐phase non‐Newtonian systems. It is shown that gas holdup in convergence‐divergence draft tubes is higher than that in a conventional draft tube and increases with superficial gas velocity. Variation of the structural parameters of convergence‐divergence draft tubes has little effect on gas holdup in the two‐phase and three‐phase system. The mathematical model, which is based on a drift‐flux model, was developed to describe the liquid circulation velocity in the reactor satisfactorily.  相似文献   

20.
Experiments have been carried out to study the individual phase holdup characteristics in a cocurrent three‐phase fluidized bed. An antenna type modified air sparger has been used in the gas–liquid distributor section, for uniform mixing of the fluids with the gas moving as fine bubbles to the fluidizing section. This arrangement also reduces the pressure drop encountered through a conventional distributor used for the purpose. To overcome the non‐uniformity of flow through the column (i.e., the central region), a distributor plate with 20% open area has been fabricated with concentric circular punched holes of increased diameter from centre to the wall. Model equations have been developed by factorial design analysis for predicting various individual phase holdups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号