首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
采用高级流变扩展系统(ARES)研究了聚丙烯(PP)/乙烯-辛烯共聚物共混体系的流变性能,探讨了乙烯-辛烯共聚物含量和 PP 种类对共混体系储能模量、剪切黏度和零切黏度的影响。实验结果显示,PP 结构和 POE 含量对 PP/POE 共混体系的剪切流变性能有显著影响,随着 POE 含量的增加,PP1/POE 共混体系的储能模量和剪切黏度增加的幅度明显小于 PP2/POE 共混体系,PP1/POE 共混体系和 PP2/POE 共混体系的储能模量和剪切黏度增加幅度较大分别发生在 POE 含量为20%~30%和10%~20%,即共混体系发生"脆—韧"转变阶段。PP/POE 共混体系中存在界面滑移现象,且 PP 和 POE 的界面相容性对界面滑移现象影响较大,其中 PP1/POE 的界面滑移比PP2/POE 的界面滑移更加明显。  相似文献   

2.
Ternary blends of polyoxymethylene (POM), polyolefin elastomer (POE), and glycidyl methacrylate grafted high density polyethylene (GMA‐g‐HDPE) with various component ratios were studied for their mechanical and thermal properties. The size of POE dispersed phase increased with increasing the elastomer content due to the observed agglomeration. The notched impact strength demonstrated a parabolic tendency with increasing the elastomer content and reached the peak value of 10.81 kJ/m2 when the elastomer addition was 7.5 wt%. The disappearance of epoxy functional groups in the POM/POE/GMA‐g‐HDPE blends indicated that GMA‐g‐HDPE reacted with the terminal hydroxyl groups of POM and formed a new graft copolymer. Higher thermal stability was observed in the modified POM. Both storage modulus and loss modulus decreased from dynamic mechanical analysis tests while the loss factor increased with increasing the elastomer content. GMA‐g‐HDPE showed good compatibility between the POM matrix and the POE dispersed phase due to the reactive compatibilization of the epoxy groups of GMA and the terminal hydroxyl groups of POM. A POM/POE blend without compatibilizer was researched for comparison, it was found that the properties of P‐7.5(POM/POE 92.5 wt%/7.5 wt%) were worse than those of the blend with the GMA‐g‐HDPE compatibilizer. POLYM. ENG. SCI., 57:1119–1126, 2017. © 2017 Society of Plastics Engineers  相似文献   

3.
To explore a potential method for improving the toughness of a polylactide (PLA), we used a thermoplastic polyurethane (TPU) elastomer with a high strength and toughness and biocompatibility to prepare PLA/TPU blends suitable for a wide range of applications of PLA as general‐purpose plastics. The structure and properties of the PLA/TPU blends were studied in terms of the mechanical and morphological properties. The results indicate that an obvious yield and neck formation was observed for the PLA/TPU blends; this indicated the transition of PLA from brittle fracture to ductile fracture. The elongation at break and notched impact strength for the PLA/20 wt %TPU blend reached 350% and 25 KJ/m2, respectively, without an obvious drop in the tensile strength. The blends were partially miscible systems because of the hydrogen bonding between the molecules of PLA and TPU. Spherical particles of TPU dispersed homogeneously in the PLA matrix, and the fracture surface presented much roughness. With increasing TPU content, the blends exhibited increasing tough failure. The J‐integral value of the PLA/TPU blend was much higher than that of the neat PLA; this indicated that the toughened blends had increasing crack initiation resistance and crack propagation resistance. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
The recycled polystyrene (rPS) was toughened with ethylene‐octylene copolymer thermoplastic elastomer (POE) and high‐density polyethylene (HDPE) with various melt flow index (MFI), compatibilized by styrene‐butadiene‐styrene copolymer (SBS) to enhance the toughness of rPS for use as TV backset. The rPS/POE binary blends exhibited an increased impact strength with 5–10 wt % POE content followed by a decrease with the POE content up to 20 wt %, which could be due to poor compatibility between POE and rPS. For rPS/POE/SBS ternary blends with 20 wt % of POE content, the impact strength increased dramatically and a sharp brittle‐ductile transition was observed as the SBS content was around 3–5 wt %. Rheological study indicated a possible formation of network structure by adding of SBS, which could be a new mechanism for rPS toughening. In rPS/POE/HDPE/SBS (70/20/5/5) quaternary blends, a fibril‐like structure was observed as the molecular weight of HDPE was higher (with lower MFI). The presence of HDPE fibers in the blends could not enhance the network structure, but could stop the crack propagation during fracture process, resulting in a further increase of the toughness. The prepared quaternary blend showed an impact strength of 9.3 kJ/m2 and a tensile strength of 25 MPa, which can be well used for TV backset to substitute HIPS because this system is economical and environmental friendly. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
A novel macromolecular compatibilizer, styrene-ethylene-propylene-styrene (SEPS) with high content of styrene, was investigated for the purpose of improving the compatibility of PP (polypropylene)/PC (polycarbonate)/POE (ethylene-octene copolymer) blends. SEPS shows a remarkable compatibilizing effect since it has a particular structure with the EP-compatible aliphatic segments, which is well miscible with the nonpolar PP and olefinic elastomer POE domains, and S-chain segments which exhibit strong affinity with PC because of the similar molecular structure. Its compatibilizing effect was examined in terms of the mechanical, morphological, and thermal properties. The compatibilized PP-based blends represent remarkable improvement in impact strength and balanced tensile strength. When 5 wt % SEPS was added to PP/PC/POE blends (20 wt % POE), the impact strength of the blends was enhanced from 24 to 43 kJ/m2 without obvious drop in the tensile strength. Their morphologies show a decreasing and much more homogeneous size of dispersed PC and POE particles through addition of SEPS, and the fracture surface morphologies change from irregular mosaic to the mix of mosaic and striation, and finally the regularly distant striation. The special morphology structure that resulted from the effect of the compatibilizer could be a key for enhancement of toughness and balanced rigidity of the blends. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
PP/POE共混物力学性能研究   总被引:2,自引:1,他引:1  
用双螺杆挤出机制备了聚丙(烯PP)/聚烯烃弹性(体POE)共混物,研究了POE用量对PP/POE共混物冲击性能、拉伸性能及弯曲性能的影响。结果表明:随着POE含量的增加,PP/POE共混物的冲击强度明显提高;拉伸强度及拉伸模量弯、曲强度及弯曲模量、断裂伸长率及断裂强度均减小。  相似文献   

7.
Dynamic vulcanization was successfully applied to epoxy resin reinforced polypropylene (PP)/ethylene‐octene copolymer (POE) blends, and the effects of different compatibilizers on the morphology and properties of dynamically cured PP/POE/epoxy blends were studied. The results show that dynamically cured PP/POE/epoxy blends compatibilized with maleic anhydride‐grafted polypropylene (MAH‐g‐PP) have a three‐phase structure consisting of POE and epoxy particles dispersed in the PP continuous phase, and these blends had improved tensile strength and flexural modulus. While using maleic anhydride‐grafted POE (MAH‐g‐POE) as a compatibilizer, the structure of the core‐shell complex phase and the PP continuous phase showed that epoxy particles could be embedded in MAH‐g‐POE in the blends, and gave rise to an increase in impact strength, while retaining a certain strength and modulus. DSC analysis showed that the epoxy particles in the blends compatibilized with MAH‐g‐PP were more efficient nucleating agents for PP than they were in the blends compatibilized with MAH‐g‐POE. WAXD analysis shows that compatibilization do not disturb the crystalline structure of PP in the blends. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
Morphology and mechanical properties of polypropylene (PP)/high density polyethylene (HDPE) blends modified by ethylene-propylene copolymers (EPC) with residual PE crystallinity were investigated. The EPC showed different interfacial behavior in PP/HDPE blends of different compositions. A 25/75 blend of PP/HDPE (weight ratio) showed improved tensile strength and elongation at break at low EPC content (5 wt %). For the PP/HDPE = 50/50 blend, the presence of the EPC component tended to make the PP dispresed phase structure transform into a cocontinuous one, probably caused by improved viscosity matching of the two components. Both tensile strength and elongation at break were improved at EPC content of 5 wt %. For PP/HDPE 75/25 blends, the much smaller dispersed HDPE phase and significantly improved elongation at break resulted from compatibilization by EPC copolymers. © 1995 John Wiley & Sons, Inc.  相似文献   

9.
In this work, the morphologies of polypropylene (PP)/ethylene‐propylene‐diene (EPDM) rubber/high density polyethylene (HDPE) 70/20/10 blends were studied and compared with the predictions of the spreading coefficient and minimum free energy models. The interfacial tension of PP/HDPE, PP/EPDM, and HDPE/EPDM blends were obtained by fitting the experimental dynamic storage modulus data to Palierne's theory. The prediction results showed core‐shell morphology (core of HDPE and shell of EPDM) in PP matrix. The PP/EPDM/HDPE blends were respectively prepared by direct extrusion and lateral injection method. Core‐shell morphology (core of HDPE and shell of EPDM) could be obtained with direct extrusion corresponding to the predicted morphology. The morphology of PP/EPDM/HDPE blends could be effectively controlled by lateral injection method. For PP/EPDM/HDPE blend prepared by lateral injection method, HDPE and EPDM phase were dispersed independently in PP matrix. It was found that the different morphology of PP/EPDM/HDPE blends prepared by two methods showed different rheological behavior. When the core‐shell morphology (core of HDPE and shell of EPDM) appeared, the EPDM shell could confine the deformation of HDPE core significantly, so the interfacial energy contribution of dispersed phase on the storage modulus of blends would be weaken in the low frequency region. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

10.
The mechanical properties of high-density polyethylene (HDPE)-rich i-PP/HDPE blends were studied. Two grades of HDPE were investigated, one with a melt viscosity close to that of the polypropylene (PP) and the other having a much lower melt viscosity. Compatibilization of the 10/90 i-PP/HDPE blend with three copolymers (an ethylene/propylene/diene [EPDM] copolymer and two ethylene/vinylacetate [EVA] copolymers, differing in their VA content) was also investigated. Blends of PP with the low melt viscosity HDPE displayed poor mechanical properties. It was not possible to improve these properties sufficiently with EPDM or EVA. In the case where viscosity matching was achieved between PP and HDPE, addition of i-PP (up to 30%) to HDPE resulted in a large drop in the impact strength of the blends, compared to that of the neat HDPE. A large drop (>50%) was also observed in the ultimate tensile elongation. However, the flexural modulus, yield stress, and ultimate tensile strength all increased with the introduction of i-PP into HDPE. Modification of these blends with an EPDM resulted in the return of all properties to values very close to those of the neat HDPE. The ultimate tensile elongation of the EPDM-modified i-PP/HDPE blend even exceeded that of the virgin HDPE. It was also found that although EVAs can be used to compatibilize these blends these additives were not as effective as was the EPDM. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
采用双螺杆挤出机制备了均聚聚丙烯(PPH) /聚烯烃弹性体( POE) 共混物和PPH/POE/滑石粉三元共混体系。使用差示扫描量热仪和万能试验机研究了共混物和复合材料的结晶性能、力学性能和加工性能。结果表明,POE对PPH力学性能和结晶性能有明显的影响,随着POE用量的增加,PP/POE共混物的结晶度明显下降,PPH/POE 共混物的冲击强度明显提高,但拉伸强度显著降低。POE含量为20 %时,冲击强度由2.1 kJ/m2提高到39 kJ/m2,拉伸强度由30 MPa 降低到22MPa。加入滑石粉可以提高PPH/POE共混物的拉伸强度,滑石粉添加量1份时,可使共混物的拉伸强度提高到24 MPa。  相似文献   

12.
将一定比例聚醚和异辛醇相混合,采用传统的Moor等反应方法制得了具有不同相对分子质量的聚醚基异辛基焦磷酸酯,再与钛酸异丙酯反应,获得异丙基三(聚醚基异辛基焦磷酰氧基)钛酸酯。经此偶联剂处理的CaCO3对于HDPE/CaCO3和PP/POE/CaCO3材料具有明显增韧、增强作用。对PVC/CPE/DOP/CaCO3材料也具有明显改善韧性的作用。经SEM测定表明,经此偶联剂处理的CaCO3与聚合物基体间的界面较模糊。偶联剂中聚醚取代基的相对分子质量和合成原料中聚醚与异辛醇的比例对材料增韧效果具有重要影响。  相似文献   

13.
A series of blends of polypropylene (PP)–polyamide‐6 (PA6) with either reactive polyethylene–octene elastomer (POE) grafted with maleic anhydride (POE‐g‐MA) or with maleated PP (PP‐g‐MA) as compatibilizers were prepared. The microstructures and mechanical properties of the blends were investigated by means of tensile and impact testing and by scanning electron microscopy and transmission electron microscopy. The results indicated that the miscibility of PP–PA6 blends was improved with the addition of POE‐g‐MA and PP‐g‐MA. For the PP/PA6/POE‐g‐MA system, an elastic interfacial POE layer was formed around PA6 particles and the dispersed POE phases were also observed in the PP matrix. Its Izod impact strength was four times that of pure PP matrix, whilst the tensile strength and Young's modulus were almost unchanged. The greatest tensile strength was obtained for PP/PA6/PP‐g‐MA blend, but its Izod impact strength was reduced in comparison with the pure PP matrix. © 2002 Society of Chemical Industry  相似文献   

14.
PP/POE共混物的形态和性能的研究   总被引:6,自引:0,他引:6  
采用聚烯烃弹性体(POE)对聚丙烯(PP)进行增韧改性,研究了共混物的力学性能、热性能、断裂功和微观形态。结果表明:POE在PP基体中分散均匀,与基体树脂结合良好;随POE用量的增加,弹性体粒子尺寸不变仅数量增多;POE不仅可以提高材料的冲击韧性也可提高其断裂韧性;POE的加入使材料的软化点略有下降,对加工性能的影响较小。  相似文献   

15.
With the increasing ratio of waste tire powder (WTP) to low‐density polyethylene (LDPE), the hardness and tensile strength of the WTP/LDPE blends decreased while the elongation at break increased. Five kinds of compatibilizers, such as maleic anhydride‐grafted polyethylene (PE‐g‐MA), maleic anhydride‐grafted ethylene‐octene copolymer (POE‐g‐MA), maleic anhydride‐grafted linear LDPE, maleic anhydride‐grafted ethylene vinyl‐acetate copolymer, and maleic anhydride‐grafted styrene‐ethylene‐butylene‐styrene, were incorporated to prepare WTP/LDPE blends, respectively. PE‐g‐MA and POE‐g‐MA reinforced the tensile stress and toughness of the blends. The toughness value of POE‐g‐MA incorporating blends was the highest, reached to 2032.3 MJ/m3, while that of the control was only 1402.9 MJ/m3. Therefore, POE‐g‐MA was selected as asphalt modifier. The toughness value reached to the highest level when the content of POE‐g‐MA was about 8%. Besides that the softening point of the modified asphalt would be higher than 60°C, whereas the content of WTP/LDPE blend was more than 5%, and the blends were mixed by stirring under the shearing speed of 3000 rpm for 20 min. Especially, when the blend content was 8.5%, the softening point arrived at 82°C, contributing to asphalt strength and elastic properties in a wide range of temperature. In addition, the swelling property of POE‐g‐MA/WTP/LDPE blend was better than that of the other compalibitizers, which indicated that POE‐g‐MA /WTP/LDPE blend was much compatible with asphalt. Also, the excellent compatibility would result in the good mechanical and processing properties of the modified asphalt. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
New polymer blends of polypropylene random copolymer (PP‐R) and poly(ethylene‐octene) (POE) were prepared by melt‐blending process using a corotating twin‐screw extruder. The POE content was varied up to 35%. The toughening efficiency of POE for PP‐R was evaluated by the mechanical properties of the resulted PP‐R/POE blends. The crystallization behavior and morphology of the blends were also studied. Results show that POE acts as nucleation agent to induce the crystallization of PP‐R matrix at higher crystallization temperature. Super‐toughened PP‐R/POE blends (Izod impact strength more than 500 J/m) can be readily achieved with only 10 wt % of POE. The high toughness of PP‐R/POE is attributed to cavitation and shear yielding of matrix PP‐R, as revealed by the morphology studies. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
Rubber‐toughened polypropylene (PP)/org‐Montmorillonite (org‐MMT) nanocomposite with polyethylene octene (POE) copolymer were compounded in a twin‐screw extruder at 230°C and injection‐molded. The POE used had 25 wt % 1‐octene content and the weight fraction of POE in the blend was varied in the range of 0–20 wt %. X‐ray diffraction analysis (XRD) revealed that an intercalation org‐MMT silicate layer structure was formed in rubber‐toughened polypropylene nanocomposites (RTPPNC). Izod impact measurements indicated that the addition of POE led to a significant improvement in the impact strength of the RTPPNC, from 6.2 kJ/m2 in untoughened PP nanocomposites to 17.8 kJ/m2 in RTPPNC containing 20 wt % POE. This shows that the POE elastomer was very effective in converting brittle PP nanocomposites into tough nanocomposites. However, the Young's modulus, tensile strength, flexural modulus, and flexural strength of the blends decreased with respect to the PP nanocomposites, as the weight fraction of POE was increased to 20 wt %. Scanning electron microscopy (SEM) was used for the investigation of the phase morphology and rubber particles size. SEM study revealed a two‐phase morphology where POE, as droplets was dispersed finely and uniformly in the PP matrix. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3441–3450, 2006  相似文献   

18.
DCP用量对动态硫化POE/PP热塑性弹性体性能的影响   总被引:1,自引:0,他引:1  
周琦  王勇  邱桂学 《中国塑料》2008,22(4):79-82
研究了过氧化二异丙苯(DCP)用量对动态硫化乙烯一辛烯共聚物聚丙烯(POE/PP)体系的物理性能以及PP结晶形态和POE相态结构的影响。结果表明:随DCP用量的增加,POE/PP体系的交联密度增大,而断裂伸长率、永久变形和拉伸强度下降。过量DCP的加人会导致PP降解,使体系的熔体流动速率随DCP用量的增加呈上升趋势。DSC分析表明,随着DCP用量的增加,POE/PP体系结晶度下降。微观分析得出,DCP对POE/PP体系相态结构影响显著,当DCP用量为1份时交联POE以较小的颗粒均匀分布于PP连续相中。  相似文献   

19.
用熔融共混法制备了高密度聚乙烯/聚丙烯(HDPE/PP)和乙烯-辛烯弹性体/高密度聚乙烯/聚丙烯(POE/HDPE/PP)复合材料。通过冲击、弯曲和拉伸测试研究了复合材料的力学性能,采用扫描电镜(SEM)观察了材料的形貌。结果表明,由于HDPE和PP的相容性有限,限制了HDPE对PP综合力学性能的提高;通过添加POE,能改善HDPE/PP共混物的相容性,使HDPE/PP复合材料在保持较高弯曲和拉伸性能的前提下,抗冲击性能获得明显提高。当HDPE/PP的含量比为12/88和POE含量为8wt%时,POE/HDPE/PP三元复合材料的综合力学性能较好。  相似文献   

20.
UHMWPE/HDPE共混物的流动性及力学性能的研究   总被引:7,自引:0,他引:7  
采用不同MFR的HDPE与UHMWPE进行熔体共混。结果表明UHMWPE/HDPE共混物流动性和力学性能的变化受体系组成、熔体粘度比等因素的影响较大。HDPE的MFR过高、过低或用量过多,均不利于共混物流动性及综合力学性能的改善。当HDPE作为分散相时,易于实现向UHMWPE高粘弹粒子的渗透、分散及结合,共混物的.MFR及拉伸屈服强度、断裂强度、断裂伸长率均比UHMWPE有提高,共混物表现出协同效应;当UHMWPE为分散相或二者熔体粘度比差异过大时,混合效果变差,共混物综合力学性能下降;在某些中间配比下,二者表现出增链缠结效应,共混物MFR明显降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号