首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《分离科学与技术》2012,47(6):892-900
This paper reports biosorption of Cr(VI), Cu(II), and Ni(II) onto Acinetobacter sp. FM4 biomass isolated from soil irrigated with tannery effluent from single, binary, and ternary metal solutions. Optimum pH for biosorption was found to be 2.0 for Cr(VI), 5.0 for Cu(II), and 6.0 for Ni(II) ions. Sorption capacities for Cr(VI), Cu(II), and Ni(II) ions were estimated as 90 mg g-1, 93.3 mg g-1, and 66.7 mg g-1, respectively. The combined effect of adsorbing one metal ion in the presence of another metal ion reduced the adsorption capacity of either metal ion. The presence of functional groups on the cell wall surface of the biomass that may interact with the metal ion was confirmed by Fourier Transform Infrared (FTIR) spectroscopy.  相似文献   

2.
In this study, the dithiocarbamate-anchored polymer/organosmectite composites were prepared for the removal of heavy metal ions (lead, cadmium and chromium) from aqueous media containing different amounts of these ions (50–750 ppm) and at different pH values (2.0–8.0). Initially, the modification of the natural smectite minerals was performed by treatment with quartamin styrene and chloromethylstyrene. Then, modified smectite nanocomposites were reacted with carbondisulfide, in order to incorporate dithiocarbamate functional groups into the nanolayer of organoclay. The dithiocarbamate-anchored nano-composites have been characterized by FTIR and used in the adsorption–desorption process. The maximum adsorptions of heavy metal ions onto the dithiocarbamate-anchored polymer/organosmectite composites from their solution was 170.7 mg g− 1 for Pb(II); 82.2 mg g− 1 for Cd(II) and 71.1 mg g− 1 for Cr(III). Competition between heavy metal ions (in the case of adsorption from mixture) yielded adsorption capacities of 70.4 mg g− 1 for Pb(II); 31.8 mg g− 1 for Cd(II) and 20.3 mg g− 1 for Cr(III). Desorption of the heavy metal ions from composite was studied in 0.5 M NaCl and very high desorption rates, greater than 93%, were achieved in all cases. Adsorption–desorption cycles showed the feasibility of repeated uses of this nanocomposite.  相似文献   

3.
The possibility of hybrid ion exchanger (HIX) application in the simultaneous removal of heavy metal ions such as Cr(VI), Cu(II) and Zn(II) as well as Cd(II) and Pb(II) was presented. The ion exchanger in question combines the unique properties of hydrated metal oxides with the mechanical and thermal stability of synthetic ion exchangers. The kinetics of the sorption process of Cr(VI), Cu(II) and Zn(II) as well as Cd(II) and Pb(II) in the presence of Cl, NO3 and SO42− as well as EDDS (ethylenediaminedisuccinic acid) was also analyzed. Additionally, the effect of initial concentration, phase contact time and pH was also studied. Taking into account the possibility of its application on a large scale, the parameters of the adsorption process were estimated based on the linear form of the Langmuir and Freundlich isotherms.  相似文献   

4.
《分离科学与技术》2012,47(18):2896-2905
ABSTRACT

Heavy metal ion pollution has become a serious problem. In this paper, a new type of adsorbent, reduced graphene oxide grafted by 4-sulfophenylazo groups (RGOS), was synthesized to adsorb heavy metal ions in an aqueous solution via two kinds of adsorption modes, ion exchange and coordination. The maximum adsorption capacities of the RGOS for Pb(II), Cu(II), Ni(II), Cd(II) and Cr(III) were 689, 59, 66, 267 and 191 mg/g, respectively. Adsorption equilibrium time of RGOS for heavy metal ions is no more than 10 min. Adsorption mechanism was supposed based on elemental analyses, adsorption data, and Fourier transform infrared spectra.  相似文献   

5.
A novel polymeric superabsorbing composite was prepared using the graft copolymerization of acrylic acid (AANa, 70% neutralization with NaOH) and 2‐acrylamido‐2‐methyl propane sulfonic acid (AMPS) onto the hydroxyethyl cellulose (HEC) [HEC‐g‐P(AANa‐co‐AMPS)], which was initiated by means of a glow‐discharge electrolysis plasma rather than a chemical initiator. The composite material was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and thermal gravimetric analysis (TGA). We obtained absorbencies of 2490 g g?1 for distilled water and of 109 g g?1 for 0.9 wt% NaCl solution. Results show that the maximum adsorption capacities for Ni(II), Cu(II), Cd(II), Pb(II), and Hg(II) from aqueous solution were 974.84, 975.43, 1535.52, 1970.47, and 1879.53 mg g?1, respectively. The adsorption isotherm followed the Langmuir isotherm model very well. Adsorption kinetics results indicate that the fast adsorption rate followed the pseudo‐second‐order kinetics equations. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

6.
《分离科学与技术》2012,47(4-5):489-505
Abstract

The objective of the present work is to extend the application of adsorbing colloid flotation techniques to remove mixtures of metal ions. The systems studied are: 1) Co(II) and Cr(VI); 2) Co(II), Ni(II), and Cr(VI); 3) Cr(VI), Cu(II), and Zn(II); 4) Cr(VI), Cu(II), Zn(II), and Ni(II); 5) Cd(II), Pd(II), and Cu(II). Ferric hydroxide and aluminum hydroxide were used as the coprecipitant, and sodium lauryl sulfate was used as the collector and frother. The ionic strength of the solution was adjusted with NaNO3 or Na2SO4. It was found that all the heavy metals can be removed effectively by a single step foam flotation treatment.  相似文献   

7.
Poly(N‐vinyl‐2‐pyrrolidone‐g‐citric acid) [P(VP‐g‐CA)] hydrogels were prepared for the removal of U(VI), Pb(II), and Cd(II) from aqueous solutions containing different amounts of these ions (2.5–10 mg/L). Different pHs (1–13), temperatures (20–40°C), and ionic strengths (0.5M) were also tried for the adsorption behavior of these ions. The competitive adsorption values of U(VI), Pb(II), and Cd(II) ions on pure poly(N‐vinyl‐2‐pyrrolidone) were low [0.71–2.03 mg of U(VI)/g of dry gel, 0.15–1.58 mg of Pb(II)/g of dry gel, and 0.10–0.68 mg of Cd(II)/g of dry gel]. The incorporation of citric acid significantly increased the adsorption of these ions [0.67–2.12 mg of U(VI)/g of dry gel, 0.44–1.88 mg of Pb(II)/g of dry gel, and 0.04–0.92 mg of Cd(II)/g of dry gel for P(VP‐g‐CA)‐1; 0.71–2.36 mg of U(VI)/g of dry gel, 0.60–2.16 mg of Pb(II)/g of dry gel, and 0.14–0.80 mg of Cd(II)/g of dry gel for P(VP‐g‐CA)‐2; and 0.79–2.47 mg of U(VI)/g of dry gel, 0.70–2.30 mg of Pb(II)/g of dry gel, and 0.20–0.86 mg of Cd(II)/g of dry gel for P(VP‐g‐CA)‐3]. The observed affinity order of adsorption was U(VI) > Pb(II) > Cd(II) for competitive conditions. The optimal pH range for the removal of these ions was 5–9. Competitive adsorption studies showed that other stimuli, such as the temperature and ionic strength of the solution, also influenced the U(VI), Pb(II), and Cd(II) adsorption capacity of P(VP‐g‐CA) hydrogels. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2019–2024, 2003  相似文献   

8.
For the first time, a novel amidinothiourea-linked covalent organic framework (COF) (TpAt) has been successfully synthesized by the condensation between 1,3,5-triformylphloroglucinol and amidinothiourea via vacuum solvothermal reaction, and was further utilized for the adsorption of metal ions from aqueous solution. The effects of initial concentration, pH and contact time on the adsorption process were investigated. As a result, the TpAt COF showed maximum binding capacities as high as 95.44, 100.76 and 99.08 mg g–1 for Cr(III), Cd(II) and Cu(II) within 180 min at the initial concentration of 100 mg L–1, respectively. The isotherms of metal ions onto TpAt could be described by the Freundlich isotherm equation, and the adsorption kinetics followed the pseudo-second-order model. The TpAt could be reused for more than five adsorption–elution cycles, whilst basically maintaining its original adsorption performance and the structural integrity of the COF layers. The robust adsorption efficiency can be attributed to the coordination between metal ions and N, O and S atoms in the TpAt framework. The TpAt COF represents an ideal candidate for the removal of heavy metal ions in environmental pollution treatment. © 2021 Society of Industrial Chemistry.  相似文献   

9.
The synthesis and characterization of poly(ethylenediaminetetraacetic acid‐co‐lactose) with pendant carboxylic groups of high molar mass (132 kg mol?1) is described. The polycondensate was hydrolytically and microbiologically degradable with conventional microbiological methods. The metal‐complexing properties of the polyester were studied for Cr(III), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Sr(II), Cd(II), Pb(II), and Al(III) ions in aqueous solution with the liquid‐phase polymer‐based retention (LPR) method. In addition, the complexing capacity of the Cu(II)‐saturated copolymer was determined by thermogravimetric analysis to be 182 mg g?1 of polymer. According to the retention profiles determined as a function of the filtration factor with LPR in conjunction with inductively coupled plasma spectrometry, Cr(III) and Fe(III) showed a strong interaction with this polymer under these conditions, as indicated by retention values of about 100% at pH 5. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 650–657, 2003  相似文献   

10.
Biosorption of Pb(II) and Ni(II) ions onto the Eclipta alba stem powder (EAS) was investigated in a batch system. The biosorbent was characterized by fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), transmission electron microscopy (TEM) and elemental analysis. Adsorption influencing factors like pH, adsorbent dose, initial metal ion concentration and contact time were investigated. The adsorption mechanism of Pb(II) and Ni(II) followed the pseudo-second-order kinetic model (R2 > 0.998). The Langmuir isotherm model fitted well and the maximum monolayer adsorption capacity of the sorbent for Pb(II) and Ni(II) was found to be 66.2 ± 1.9 mg g?1and 62.5 ± 1.8 mg g?1, respectively. Desorption and recovery were carried out using dilute HCl solution.  相似文献   

11.
The N‐containing conjugated microporous polymers (CMPs) are synthesized by 2,5‐dibromopyrazine or its isomeric pyridazine monomer and 1,3,5‐triethynylbenzene via the Pd(0)/Cu(I)‐catalyzed Sonogashira–Hagihara cross‐coupling polycondensation. The resulting CMPs exhibit diverse porosity and morphology, which reveals macroscopically porous 3D networks for BQCMP‐1, agglomerated and amorphous structure for DQCMP‐1, arising from the variation of isomeric monomer. In addition, metal ions adsorption capacity of Zn(II), Cr(VI), Ni(II) have been investigated due to the good porosity of CMPs. Compared with Zn(II) and Cr(VI), the adsorption capacity of Ni(II) for BQCMP‐1 and DQCMP‐1 is maximal, which is 272 mg g?1 and 559 mg g?1. Our study may provide a useful guidance to manipulate CMPs by varying the constitution of isomeric monomer.

  相似文献   


12.
The aim of this study was to investigate in detail the performance for removal of heavy metal ions of beads composed of poly(2‐hydroxyethyl methacrylate) (pHEMA) to which N‐methacryloylhistidine (MAH) was copolymerized. The metal‐complexing ligand MAH was synthesized by using methacryloyl chloride and histidine. Spherical beads with an average size of 150–200 μm were obtained by the radical suspension polymerization of MAH and HEMA conducted in an aqueous dispersion medium. Owing to the reasonably rough character of the bead surface, p(HEMA‐MAH) beads had a specific surface area of 17.6 m2/g. The synthesized MAH monomer was characterized by NMR; p(HEMA‐MAH) beads were characterized by swelling studies, FTIR and elemental analysis. The p(HEMA‐MAH) beads with a swelling ratio of 65%, and containing 1.6 mmol MAH/g, were used in the adsorption/desorption experiments. Adsorption capacity of the beads for the selected metal ions, i. e., Cu(II), Cd(II), Cr(III), Hg(II) and Pb(II), were investigated in aqueous media containing different amounts of these ions (10–750 mg/L) and at different pH values (3.0–7.0). Adsorption equilibria were established in about 20 min. The maximum adsorption capacities of the p(HEMA‐MAH) beads were 122.7 mg/g for Cu(II), 468.8 mg/g for Cr(III), 639.4 mg/g for Cd(II), 714.1 mg/g for Pb(II) and 1 234.4 mg/g for Hg(II). pH significantly affected the adsorption capacity of MAH incorporated beads. The chelating beads can be easily regenerated by 0.1 M HNO3 with high effectiveness. These features make p(HEMA‐MAH) beads a potential candidate for heavy metal removal at high capacity.  相似文献   

13.
Various adsorbent materials have been reported in the literature for heavy metal removal. We have developed a novel approach to obtain high metal sorption capacity utilising cysteine containing adsorbent. Metal complexing aminoacid-ligand cysteine was immobilised onto poly(hydroxyethylmethacrylate) (PHEMA) microbeads. PHEMA-cysteine affinity microbeads containing 0.318 mmol cysteine/g were used in the removal of heavy metal ions (i.e. copper, lead and cadmium) from aqueous media containing different amounts of these ions (50–400 mg/l for Pb(II) and Cd(II), 25–60 mg/l for Cu(II)) and at different pH values (4.0–7.0). The maximum adsorption capacity of heavy metal ions onto the cysteine-containing microbeads under non-competitive conditions were 0.259 mmol/g for Pb(II), 0.330 mmol/g for Cd(II) and 0.229 mmol/g for Cu(II). The affinity order was observed as follows: Cd(II)>Pb(II)>Cu(II). The competitive adsorption capacities of the heavy metals were 0.260 mmol/g for Cd(II) and 0.120 mmol/g for Cu(II). Pb(II) adsorption onto cysteine-immobilised microbeads was zero under competitive conditions. The affinity order was as follows: Cd(II)>Cu(II)>Pb(II). The formation constants of cysteine–metal ion complexes have been investigated applying the method of Ruzic. The calculated value of stability constants were 1.75×104 l/mol for Pb(II)–cysteine complex and 4.35×104 l/mol for Cd(II)–cysteine complex and 1.39×104 l/mol for Cu(II)–cysteine complex. PHEMA microbeads carrying cysteine can be regenerated by washing with a solution of hydrochloric acid (0.05 M). The maximum desorption ratio was greater than 99%. These PHEMA microbeads are suitable for repeated use for more than three adsorption–desorption cycles without considerable loss in adsorption capacity.  相似文献   

14.
3-[(Dioctylamino)methyl]alizarin (C8AL), which is endowed with high solubility in nonpolar organic solvents through introduction of dioctylaminomethyl group into the alizarin nucleus was studied for extracting heavy metal ions such as Cu(II), Zn(II), Cd(II), Co(II), Mn(II), and Ni(II), from aqueous solution.Cu(II) was most readily extracted into chlorobenzene at low pH and thus was separated from other metal ions. The metal ions stabilized in alkaline solution in the presence of water-soluble chelating agents were found to be extracted by this, alizarin-type extraction agent into chlorobenzene with the assistance by lipophilic quaternary ammonium salt, Capriquat? (methyltrioctylammonium chloride, Q?C1?).The proton dissociation process of CRAL was studied, and the mechanism of these metal extractions was discussed.The separation of Cu(II) and Ni(II) from the mixture with other divalent metal ions was also studied.  相似文献   

15.
Metal‐chelating membranes have advantages as adsorbents in comparison with conventional beads because they are not compressible and they eliminate internal diffusion limitations. The aim of this study was to explore in detail the performance of poly(2‐hydroxyethyl methacrylate–methacryloylamidohistidine) [poly(HEMA–MAH)] membranes for the removal of three toxic heavy‐metal ions—Cd(II), Pb(II), and Hg(II)—from aquatic systems. The poly(HEMA–MAH) membranes were characterized with scanning electron microscopy and 1H‐NMR spectroscopy. The adsorption capacity of the poly(HEMA–MAH) membranes for the selected heavy‐metal ions from aqueous media containing different amounts of these ions (30–500 mg/L) and at different pH values (3.0–7.0) was investigated. The adsorption capacity of the membranes increased with time during the first 60 min and then leveled off toward the equilibrium adsorption. The maximum amounts of the heavy‐metal ions adsorbed were 8.2, 31.5, and 23.2 mg/g for Cd(II), Pb(II), and Hg(II), respectively. The competitive adsorption of the metal ions was also studied. When the metal ions competed, the adsorbed amounts were 2.9 mg of Cd(II)/g, 14.8 mg of Pb(II)/g, and 9.4 mg of Hg(II)/g. The poly(HEMA–MAH) membranes could be regenerated via washing with a solution of nitric acid (0.01M). The desorption ratio was as high as 97%. These membranes were suitable for repeated use for more than three adsorption/desorption cycles with negligible loss in the adsorption capacity. The stability constants for the metal‐ion/2‐methacryloylamidohistidine complexes were calculated to be 3.47 × 106, 7.75 × 107, and 2.01 × 107 L/mol for Cd(II), Pb(II), and Hg(II) ions, respectively, with the Ruzic method. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1213–1219, 2005  相似文献   

16.
《分离科学与技术》2012,47(3):591-609
Abstract

The aniline moiety was covalently grafted onto silica gel surface. The modified silica gel with aniline groups (SiAn) was used for removal of Cu(II), Fe(III), and Cr(III) ions from aqueous solution and industrial effluents using a batch adsorption procedure. The maximum adsorption of the transition metal ions took place at pH 4.5. The adsorption kinetics for all the adsorbates fitted better the pseudo second‐order kinetic model, obtaining the following adsorption rate constants (k2): 1.233 · 10?2, 1.902 · 10?2, and 8.320 · 10?3 g · mg?1 min?1 for Cr(III), Cu(II), and Fe(III), respectively. The adsorption of these transition metal ions were fitted to Langmuir, Freundlich, Sips, and Redlich‐Peterson isotherm models; however, the best isotherm model fitting which presented a lower difference of the q (amount adsorbed per gram of adsorbent) calculated by the model from the experimentally measured, was achieved by using the Sips model for all adsorbates chosen. The SiAn adsorbent was also employed for the removal of the transition metal ions Cr(III) (95%), Cu(II) (95%), and Fe(III) (94%) from industrial effluents, using the batch adsorption procedure.  相似文献   

17.
Surplus biological sludge can be used as a low‐cost adsorbent in the removal of heavy metal from wastewater. A three‐zone contact–settling pilot plant was designed and operated to maintain continuous sludge–metal solution contact and subsequent separation of solid–liquid phases, all in the same vessel. Mild agitation was used to ensure good contact between Cu(II) and sludge without impairing solid–liquid separation. Heavy metal removal efficiency was largely unaffected by an increase in the Cu/sludge feed ratio as long as metal binding sites in the sludge remained unsaturated. Maximum metal uptake (75 mg Cu(II) g?1 of total solids in the sludge) was found for Cu/sludge feed ratios ≥ 90 mg Cu(II) g?1 of total solids. Pilot plant metal sorption uptake at different operational conditions correlated well with the calculated values from batch equilibrium adsorption isotherms. The amount of Cu(II) adsorbed on sludge influenced the degree of clarification due to the flocculating effect of Cu(II). Under operational conditions, a high degree of heavy metal removal and efficient clarification were achieved. Pilot plant operation at a Cu/sludge feed ratio around 90 mg Cu(II) g?1 of total solids allowed efficient use of the biosorbent and high heavy metal removal efficiency in addition to a good quality metal‐free effluent in terms of low total suspended solids content. © 2001 Society of Chemical Industry  相似文献   

18.
N ,N ‐Dimethylamino ethyl methacrylate (DMAEMA) is covalently bonded on a commercial polyethylene‐coated polypropylene skin‐core structure fiber (PE/PP) in aqueous and MeOH/H2O solutions by a one‐step green reaction using radiation‐induced graft polymerization. The effects of the absorbed dose and solvent system on grafting yield are investigated, while the chemical and physical properties of the functionalized fiber are also evaluated. The fiber with a Dg of 51.6% exhibited good adsorption capacity of Au(III) ions over a large range of concentrations (from 10 to 2.5 g L?1) in both batch and flow‐through adsorption tests. The highest capacity of Au was 949.3 mg g?1. After elution, the adsorbents can be reused without any further regeneration for at least five adsorption‐desorption cycles. Additionally, the fibers show high selectivity for Au(III). The distribution coefficient of Au(III) is 104 to 105 times higher than that for Cu(II), Fe(III), Ni(II), and Pb(II) even at 100 times lower Au(III) concentration compared to the co‐existing metal ion concentration. This study provides an effective and novel approach for gold recovery from aqueous solutions. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44955.  相似文献   

19.
The pollution of heavy metal ions in water poses a serious threat to human being and ecosystems. Here, we report polyamidoxime (PAO) brush grafted graphene oxide (GO) as a highly efficient adsorbent for extraction of toxic metal cations from water. Surface-initiated atom transfer radical polymerization was used to grow polyacrylonitrile (PAN) brushes on GO, followed by conversion of the nitrile groups in PAN into amidoxime groups, which had high binding affinity toward heavy metal cations. The PAO brush grafted GO demonstrated significantly fast adsorption kinetics and large adsorption capacity. At optimal pH 5, the PAO brush grafted GO can achieve maximum adsorption capacities of 116.7 mg g−1 for Pb(II), 258.6 mg g−1 for Ag(I), 192.2 mg g−1 for Cu(II), and 167.9 mg g−1 for Fe(III), which were significantly larger than those of small molecule functionalized GO. Mechanism analysis suggested that the enhanced adsorption performance was due to the myriads of functional groups in PAO brushes that were easily accessible to metal ions because of the swelling of the polymer brushes in water. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48156.  相似文献   

20.
Functionalised SBA‐15 mesoporous silica with polyamidoamine groups (PAMAM‐SBA‐15) was successfully prepared with the structure characterised by X‐ray diffraction, nitrogen adsorption–desorption, Fourier transform infrared spectra and thermogravimetric analysis. PAMAM‐SBA‐15 was applied as adsorbent for Cu(II), Pb(II) and Cd(II) ions removal from aqueous solution. The effects of the solution pH, adsorbent dosage and metal ion concentration were studied under the batch mode. The Langmuir model was fitted favourably to the experimental data. The maximum sorptive capacities were determined to be 1.74 mmol g?1 for Cu(II), 1.16 mmol g?1 for Pb(II) and 0.97 mmol g?1 for Cd(II). The overall sorption process was fast and its kinetics was fitted well to a pseudo‐first‐order kinetic model. The mean free energy of sorption, calculated from the Dubinin–Radushkevich isotherm, indicated that the sorption of lead and copper, with E > 16 kJ mol?1, followed the sorption mechanism by particle diffusion. The adsorbent could be regenerated three times without significant varying its sorption capacity. A series of column tests were performed to determine the breakthrough curves with varying bed heights and flow rates. The breakthrough data gave a good fit to the Thomas model. Maximum sorption capacity of 1.6, 1.3 and 1.0 mmol g?1 were found for Cu(II), Pb(II) and Cd(II), respectively, at flow rate of 0.4 mL min?1 and bed height of 8 cm, which corresponds to 83%, 75% and 73% of metallic ion removal, respectively, which very close to the value determined in the batch process. Bed depth service time model could describe the breakthrough data from the column experiments properly. © 2012 Canadian Society for Chemical Engineering  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号