首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nonisothermal crystallization and melting behavior of PP/nanoclay/CaCO3 ternary nanocomposite were investigated using different melt flow index (MFI) of PP, nanoclay and CaCO3 contents. The rate of crystallization was also studied using relative crystallinity as a function of temperature and time. The results show that the increase of MFI of PP and CaCO3 content in the prepared ternary nanocomposite shift the crystallization curve of PP to the higher temperature. However, increasing the content of nanoclay from 2 wt % to 6 wt % decreases the crystallization temperature possibly due to the restriction of molecular chain mobility. Further analysis of nonisothermal crystallization was carried out based on Avrami equation which the crystallization kinetic of prepared nanocomposite was evaluated. Except the significant variation in the heat of melting, the influence of these parameters on the melting behavior was much less than the crystallization process. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
The tensile modulus of PP/nanoclay/CaCO3 hybrid ternary nanocomposite was analyzed using composite models. Rule of mixtures, inverse rule of mixtures, modified rule of mixtures (MROM), Guth, Paul, Counto, Hirsch, Halpin–Tsai, Takayanagi, and Kerner–Nielsen models were developed for three‐phase system containing two nanofillers. Among the studied models, inverse rule of mixtures, Hirsch, Halpin–Tsai, and Kerner–Nielsen models calculated the tensile modulus of PP/nanoclay/CaCO3 ternary nanocomposite successfully compared with others. Furthermore, the Kerner–Nielsen model was simplified to predict the tensile modulus by volume fractions of nanofillers. Also, Takayanagi model was modified for the current ternary system. The developed Takayanagi model can predict the tensile modulus using Young's modulus and volume fractions of matrix and nanofillers. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
Inorganic nanofillers, CaCO3 and nanoclay, are widely applied to improve the mechanical properties of polypropylene (PP). In general, the use of spherical CaCO3 can enhance the impact strength while the use of layered nanoclay can enhance the modulus and yield stress. With the objective to simultaneously improve the stiffness, strength, and impact strength of PP, in this work a ternary nanocomposite, PP/CaCO3/nanoclay (NCPP), was prepared and its morphology, crystallization, and mechanical behaviors were investigated with a comparison to the binary nanocomposites, PP/CaCO3 (CPP) and PP/nanoclay (NPP). The results showed that in NCPP the nanoclay was extremely exfoliated with a much higher degree than that in NPP, which was possibly because the incorporation of CaCO3 nanoparticles adjusted the matrix viscosity and thus provided a balance between shear stress and molecule diffusion. As a result of this highly exfoliated structure, a substantial increase in modulus and yield stress was attained in NCPP. However, its impact strength was less enhanced. The toughening effects of the CaCO3 particles observed in CPP became ineffective. This difference was ascribed to the fact that in NCPP the crystallization behavior was dominated by the nanoclay and the formation of β‐phase crystallites induced by the CaCO3 particles was inhibited. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

4.
The effect of calcium carbonate (CaCO3) on the mechanical properties (with heat treatment) and thermal properties of polypropylene and isotactic polypropylene (i‐PP)/ethylene vinyl acetate (EVA) blends was investigated. CaCO3, in five different concentrations (3, 6, 9, 12l, and 15 wt %), was added to i‐PP/EVA (88/12) to produce ternary composites. The mechanical properties, including the yield and tensile strengths, elastic modulus, Izod impact strength for notch radii of 0.25 and 1 mm, and hardness with and without an annealing heat treatment, and the thermal properties, such as the melting point and melt‐flow index, of the composites were investigated. The annealing heat treatment was carried out at 100°C for three different holding times: 75, 100, and 150 h. On the basis of the results, attempts were made to establish a relationship between the CaCO3 content, the annealing holding time, and the mechanical and thermal properties to obtain the best results. The tensile test results showed that the heat treatment was not effective for the ultimate tensile strength, and the yield strength and tensile strength decreased gradually as the CaCO3 content increased. However, CaCO3 was effective for higher elastic modulus, impact strength, and hardness values. A considerable increase in the elastic modulus was found with a 3% CaCO3 concentration for a holding time of 100 h. The maximum impact strength for a notch radius of 1 mm was obtained with 3% CaCO3 with annealing for a holding time of 100 h, whereas a 9% CaCO3 concentration produced higher toughness values for a notch radius of 0.25 mm. The fracture surfaces also supported the results from the Izod impact tests. Similarly, hardness values increased with the annealing heat treatment and increasing CaCO3 content. However, different holding times showed similar effects on the hardness values. The increased CaCO3 content caused the melting point to increase 5°C, whereas the melt‐flow index showed a sharp decrease as the CaCO3 content increased to 3%. Taking into consideration the mechanical and thermal properties and the annealing holding time, we recommend a CaCO3 concentration of 3% with an annealing heat treatment for 100 h for optimum properties of such ternary composites. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1126–1137, 2005  相似文献   

5.
Polypropylene/Pine apple leaf fiber (PP/PALF)‐reinforced nanocomposites were fabricated using melt blending technique in a twin‐screw extruder (Haake Rheocord 9000). Variation in mechanical properties, crystallization behavior, water absorption, and thermal stability with the addition of nanoclay in PP/PALF composites were investigated. It was observed that the tensile, flexural, and impact properties of PP increase with the increase in fiber loading from 10 to 30 wt %. Composites prepared using 30 wt % PALF and 5 wt % MA‐g‐PP exhibited optimum mechanical performance with an increase in tensile strength to 31%, flexural strength to 45% when compared with virgin PP. Addition of nanoclay results in a further increase in tensile and flexural strength of PP/PALF composites to 20 and 24.3%, which shows intercalated morphology. However, addition of nanoclay does not show any substantial increase in impact strength when compared with PP/PALF composites. Dynamic mechanical analysis tests revealed an increase in storage modulus (E′) and damping factor (tan δ), confirming a strong influence between the fiber/nanoclay and MA‐g‐PP. Differential scanning calorimetry, thermogravimetric analysis thermograms also showed improved thermal properties when compared with the virgin matrix. TEM micrographs also showed few layers of agglomerated clay galleries along with mixed nanomorphology in the nanocomposites. Wide angle X‐ray diffraction studies indicated an increase in d‐spacing from 22.4 Å in Cloisite 20A to 40.1 Å in PP/PALF nanocomposite because of improved intercalated morphology. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
Isotactic polypropylene (PP) and calcium carbonate (CaCO3) nanocomposites were prepared by melt extrusion in a twin screw extruder. The commercial CaCO3 nanoparticles had a poor dispersion in PP matrix. The addition of a small amount of a nonionic modifier during melt extrusion greatly improved the dispersion of CaCO3 nanoparticles. The influence of CaCO3 nanoparticles on the crystallization of PP was studied by wide angle X-ray diffraction and polarized optical microscopy. The introduction of CaCO3 particles resulted in small and imperfect PP spherulites, decreased spherulite growth rate and induced formation of β-form PP. The yield strength of PP decreased gradually while its Young's modulus increased slightly with increasing CaCO3 loading. By adding 1.5 wt% of nonionic modifier to PP/CaCO3 (85/15) nanocomposite these tensile properties were not changed much but the notched Izod impact energy of the composites was significantly increased.  相似文献   

7.
Tensile and impact behavior of CaCO3-filled polypropylene was studied in the composition range 0–60 wt % filler. Tensile modulus increased while tensile strength and breaking elongation decreased with increase in CaCO3 content. The modulus increase and elongation decrease were attributed to increased filler–polymer interaction resulting in reduction in molecular mobility, while increased amorphization and obstruction to stress transfer accounted for the tensile strength decrease. Analysis of tensile strength data showed introduction of stress concentration in the composites. Izod impact strength at first increased up to a critical CaCO3 content, beyond which the value decreased. Surface treatment of CaCO3 with a titanate coupling agent LICA 12 enhances the adhesion of the filler and polymer, which further modifies the strength properties. Scanning electron microscopic studies indicated better dispersion of CaCO3 particles upon surface treatment, which effected the changes in the strength properties of the composites.  相似文献   

8.
Dynamically vulcanized thermoplastic elastomers nanocomposites (TPV nanocomposites) based on linear low density polyethylene (LLDPE)/reclaimed rubber/organoclay were prepared via one‐step melt blending process. Maleic anhydride grafted polyethylene (PE‐g‐MA) was used as a compatibilizing agent. The effects of reclaimed rubber content (10, 30, and 50 wt %), nanoclay content (3, 5, and 7 wt %), and PE‐g‐MA on the microstructure, thermal behavior, mechanical properties, and rheological behavior of the nanocomposites were studied. The TPV nanocomposites were characterized by X‐ray diffraction, transmission electron microscopy, scanning electron microscopy (SEM), differential scanning calorimeter, mechanical properties, and rheometry in small amplitude oscillatory shear. SEM photomicrographs of the etched samples showed that the elastomer particles were dispersed homogeneously throughout the polyethylene matrix and the size of rubber particles was reduced with introduction of the organoclay particles and compatibilizer. The effects of different nanoclay contents, different rubber contents, and compatibilizer on mechanical properties were investigated. Increasing the amount of nanoclay content and adding the compatibilizer result in an improvement of the tensile modulus of the TPV nanocomposite samples. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
Because of the poor impact behavior of polypropylene (PP) at low temperatures, the blending of PP with metallocene‐polymerized polyethylene (mPE) elastomers was investigated in this study. However, a reduced modulus of the overall blend was inevitable because of the addition to elastomers. To obtain a balance of the properties, we introduced rigid inorganic fillers to PP/mPE blends. The performance of the composites was characterized with tensile and Charpy notched impact tests, and the fracture morphology was examined with scanning electron microscopy. The results showed that the effects of fillers in a brittle matrix and in a ductile matrix were quantitatively different. For PP/mPE/filler ternary composites, the dependence of Young's modulus and yield strength on CaCO3 content was not significant compared with that of PP/filler binary composites, whereas the elongation at break and tensile toughness at room temperature for PP/mPE/filler systems were more improved. The impact strength of the PP/mPE blends filled with untreated glass beads and CaCO3 at a low temperature was lowered because of the weak interfacial bond. However, the values of the impact strength of the PP/mPE/filler composites at a low temperature remained at a high level compared with that of pure PP. In particular, a PP/mPE blend filled with surface‐treated kaolin had a higher low‐temperature impact toughness than the unfilled blend. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 3029–3035, 2002; DOI 10.1002/app.2333  相似文献   

10.
Polypropylene (PP)/elastomer/fine filler particle ternary composite was prepared using polystyrene-block-poly(ethylene-butene)-block-polystyrene triblock copolymer (SEBS) or carboxylated SEBS (C-SEBS) as elastomer and calcium carbonate (CaCO3) having mean size about 160 nm as filler. First, SEBS (or C-SEBS) and CaCO3 particles were mixed to form master batch. Second, the prepared master batch and PP matrix were kneaded. In the PP/SEBS/CaCO3 ternary composite, CaCO3 particles and SEBS particles were dispersed in the PP matrix separately. In the PP/C-SEBS/CaCO3 ternary composite, CaCO3 particles were encapsulated in C-SEBS and formed a core–shell structure at lower CaCO3 concentration; however, some CaCO3 particles were dispersed in PP matrix at higher CaCO3 concentration. In the PP/SEBS/CaCO3 composite, the impact strength increased with the amount of incorporated CaCO3 particles. Whereas, in the PP/C-SEBS/CaCO3 composite, the impact strength increased with the amount of CaCO3 particles dispersed in PP matrix. The master-batch method was found to be useful for improving the dispersibility of CaCO3 particles than the commonly used single-batch method.  相似文献   

11.
A series of binary composites based on HDPE (high density polyethylene) and nanoinorganic particles such as nano‐CaCO3 and OMMT (organic montmorillonite) were prepared. Their properties including tensile, impact strength, and some thermal properties were tested. The results showed that binary composite has partial improvement in mechanical properties compared with pure HDPE. A ternary composite nano‐CaCO3/OMMT/HDPE was prepared and characterized. It was found that the mechanical and thermodynamic properties of this ternary composite have been enhanced greatly compared with both pure HDPE and binary composites. The tensile strength, Young's modulus, flexural strength, elastic modulus, and impact strength of nano‐CaCO3/OMMT/HDPE were increased 124.6%, 302.7%, 73.86%, 58.97%, and 27.25%, respectively. The DMA test results showed that the mechanical properties of ternary composite were increased because of the limitation on the movement of HDPE due to inorganic particles. The synergistic effect introduced by nanoparticles may play an important role in all these processes. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

12.
To improve the impact toughness of polypropylene (PP), nano‐CaCO3 was prepared by an in situ synthesis. The surface of the nano‐CaCO3 was modified by KH‐550 silane coupling agent and NDZ‐401 titanium acid ester coupling agent. Nano‐CaCO3/PP composite materials were fabricated through a melt‐blending method and characterized, and their mechanical properties were analyzed. The impact toughness and the tensile strength of the PP were improved significantly by the incorporation of nano‐CaCO3. When the weight fraction of nano‐CaCO3 was 2%, the maximum impact toughness and tensile strength of the PP nanocomposites were 293% and 259%, respectively, of the values for neat PP. Observation of the impact fracture surface of the nanocomposites indicated that the dispersion of nano‐CaCO3 modified by NDZ‐401 coupling agent was more homogeneous than that of nano‐CaCO3 modified by the KH‐550 silane coupling agent. J. VINYL ADDIT. TECHNOL., 2009. © 2009 Society of Plastics Engineers  相似文献   

13.
Polypropylene/calcium carbonate nanocomposites   总被引:9,自引:0,他引:9  
Polypropylene (PP) and calcium carbonate nanocomposites were prepared by melt mixing in a Haake mixer. The average primary particle size of the CaCO3 nanoparticles was measured to be about 44 nm. The dispersion of the CaCO3 nanoparticles in PP was good for filler content below 9.2 vol%. Differential scanning calorimetry (DSC) results indicated that the CaCO3 nanoparticles are a very effective nucleating agent for PP. Tensile tests showed that the modulus of the nanocomposites increased by approximately 85%, while the ultimate stress and strain, as well as yield stress and strain were not much affected by the presence of CaCO3 nanoparticles. The results of the tensile test can be explained by the presence of the two-counter balancing forces—the reinforcing effect of the CaCO3 nanoparticles and the decrease in spherulite size of the PP. Izod impact tests suggested that the incorporation of CaCO3 nanoparticles in PP has significantly increased its impact strength by approximately 300%. J-integral tests showed a dramatic 500% increase in the notched fracture toughness. Micrographs of scanning electron microscopy revealed the absence of spherulitic structure for the PP matrix. In addition, DSC results indicated the presence of a small amount of β phase PP after the addition of the calcium carbonate nanoparticles. We believe that the large number of CaCO3 nanoparticles can act as stress concentration sites, which can promote cavitation at the particle-polymer boundaries during loading. The cavitation can release the plastic constraints and trigger mass plastic deformation of the matrix, leading to much improved fracture toughness.  相似文献   

14.
A new kind of polypropylene (PP)/CaCO3 composites was prepared on a twin screw extruder with the nanoparticle content of 5 wt % and the 2500 mesh microparticle content of 15 wt %. The mechanical property of four different samples [pure PP (1) , PP filled with 15 wt % microCaCO3 particle composites (2) , PP filled with 5 wt % nanoCaCO3 particle composites (3) and PP filled with micro/nano‐CaCO3 complex size particle composites (4) ] was investigated through tensile tests, notched Izod impact tests and SEM. The results indicated that the sample 4 had the best mechanical property. The proofs of SEM showed that the high impact energy could lead to debonding and creating microcavitation between the nanoparticle and polymer interface if the polymer was filled with the nanoparticles. This process could absorb a lot of mechanical failure energy, but too much mechanical failure energy would lead to the enlargement of microcavitation and the destruction of the composites in sample 3 . In sample 4 , the microparticle could be used to prevent the enlargement of microcavitation in the matrix polymer under the higher impact failure energy. In this article, the model of the impacting failure process of micro/nanoCaCO3/PP composites was established. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
The effect of successive injection moldings on the thermal, rheological, and mechanical properties of a polypropylene impact copolymer (PP) was investigated. The crystal content decreased as the molecular weight decreased due to chain scission with repeated injection molding. The Young modulus and the yield stress remained constant, despite a drop in the strain to break. Virgin and recycled PP matrix were filled with nanosized calcium carbonate (CaCO3) particles. The effect of morphology on the thermal and mechanical properties of nanocomposites of virgin and recycled PP filled with nanosized CaCO3 particles was also studied. The mechanical properties of the nanocomposites were strongly influenced by the intrinsic toughness of the matrix and the concentration and dispersion of the filler. The yield strength and strain of virgin PP decreased gradually, while its Young's modulus increased slightly with increasing CaCO3 loading. These phenomena were less pronounced for the recycled matrix. Incorporation of nanoparticles to virgin matrix produced an increase in tensile stiffness and ductility, when good dispersion of the filler was achieved. However, the impact strength dropped dramatically for high filler contents. A significant increase in impact strength was observed for the recycled PP. POLYM. ENG. SCI., 50:1904–1913, 2010. © 2010 Society of Plastics Engineers  相似文献   

16.
To investigate the effect of interfacial interaction on the crystallization and mechanical properties of polypropylene (PP)/nano‐CaCO3 composites, three kinds of compatibilizers [PP grafted with maleic anhydride (PP‐g‐MA), ethylene–octene copolymer grafted with MA (POE‐g‐MA), and ethylene–vinyl acetate copolymer grafted with MA (EVA‐g‐MA)] with the same polar groups (MA) but different backbones were used as compatibilizers to obtain various interfacial interactions among nano‐CaCO3, compatibilizer, and PP. The results indicated that compatibilizers encapsulated nano‐CaCO3 particles, forming a core–shell structure, and two interfaces were obtained in the compatibilized composites: interface between PP and compatibilizer and interface between compatibilizer and nano‐CaCO3 particles. The crystallization and mechanical properties of PP/nano‐CaCO3 composites were dependent on the interfacial interactions of these two interfaces, especially the interfacial interaction between PP and compatibilizer. The good compatibility between PP chain in PP‐g‐MA and PP matrix improved the dispersion of nano‐CaCO3 particles, favored the nucleation effect of nano‐CaCO3, increased the tensile strength and modulus, but reduced the ductility and impact strength of composites. The partial compatibility between POE in POE‐g‐MA and PP matrix had little effect on crystallization and mechanical properties of PP/nano‐CaCO3 composites. The poor compatibility between EVA in EVA‐g‐MA and PP matrix retarded the nucleation effect of nano‐CaCO3, and reduced the tensile strength, modulus, and impact strength. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
Calcium carbonate‐filled syndiotactic poly(propylene) (CaCO3‐filled s‐PP) was prepared in a self‐wiping, co‐rotating twin‐screw extruder. The effects of CaCO3 of varying particle size (1.9, 2.8 and 10.5 μm), content (0–40 wt %), and type of surface modification (uncoated, stearic acid‐coated, and paraffin‐coated) on the crystallization and melting behavior, mechanical properties, and processability of CaCO3‐filled s‐PP were investigated. Non‐isothermal crystallization studies indicate that CaCO3 acts as a good nucleating agent for s‐PP. The nucleating efficiency of CaCO3 for s‐PP was found to depend strongly on its purity, type of surface treatment, and average particle size. Tensile strength was found to decrease, while Young's modulus increased, with increasing CaCO3 content. Both types of surface treatment on CaCO3 particles reduced tensile strength and Young's modulus, but improved impact resistance. Scanning electron microscopy (SEM) observations of the fracture surfaces for selected CaCO3‐filled s‐PP samples revealed an improvement in CaCO3 dispersion as a result of surface treatment. Finally, steady‐state shear viscosity of CaCO3‐filled s‐PP was found to increase with increasing CaCO3 content and decreasing particle size. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 201–212, 2004  相似文献   

18.
This article reports the mechanical, thermal, and morphological properties of polypropylene (PP)‐chicken eggshell (ES) composites. Mechanical properties like tensile strength, tensile modulus, izod impact strength, flexural modulus of PP composites with normal (unmodified) eggshell and chemically treated ES [modified ES (MES) with isophthalic acid] have been investigated. PP–calcium carbonate (CaCO3) composites, at the same filler loadings, were also prepared and used as reference. The results showed that PP composites with chemically MES had better mechanical properties compared to the unmodified ES and CaCO3 composites. An increase of about 3–18% in tensile modulus, 4–44% in izod impact strength and 1.5–26% in flexural modulus at different filler loading was observed in MES composites as compared to unmodified ES composites. Scanning electron microscopy (SEM) micrographs of fractured tensile specimens confirmed better interfacial adhesion of MES with polymer matrix resulting into lower voids and plastic deformation resulting in improved mechanicals of the composites. TEM micrographs showed acicular needle shaped morphology for modified ES and have contributed to better dispersion which is the prime reason for enhancement of all the mechanical properties. At higher filler loading, the modulus of MES composite was found to be higher by 5% as compared to commercial CaCO3 composites. POLYM. COMPOS., 35:708–714, 2014. © 2013 Society of Plastics Engineers  相似文献   

19.
Influence of filler size on impact properties for polypropylene (PP)/elastomer/filler ternary composites was investigated. Calcium carbonate (CaCO3) particles with a diameter in the range from 120 to 1200 nm were used as a filler and polystyrene-block-poly(ethylene-butene)-block-polystyrene triblock copolymer (SEBS) was used as an elastomer. In the PP/SEBS/CaCO3 ternary composite, CaCO3 particles and SEBS particles were dispersed in the PP matrix separately. In the case that SEBS elastomer volume fraction was below 0.12, the impact strength improved gradually with a decrease of CaCO3 mean diameter from 1200 to 160 nm. In the case that SEBS volume fraction was above 0.17, the impact strength improved significantly by the incorporation of CaCO3 particles with a mean diameter in the range from 120 to 900 nm. However, the impact strength hardly improved by the incorporation of CaCO3 particles with a mean diameter of 1200 nm.  相似文献   

20.
The morphologies, crystallization and melting behaviors, and mechanical, thermal and processing properties of polypropylene (PP)/CaCO3 toughening masterbatch (CTM) composites were investigated. The good dispersion of CaCO3 particles via appropriate surface encapsulation in the composites is proven by density measurements and scanning electron microscopy images. The crystallinity and tensile strength of PP decrease with the addition of CTM. The flexural modulus and storage modulus (E′) at 23 °C increase with CTM content, implying improved stiffness. A sharp increase in the Izod notched impact strength can be observed for the composites, and the critical ligament thickness (τc) is calculated to be 1.31 and 2.46 μm for PP (S1003) and PP (001 G) composites, respectively. The morphologies of the impact‐fractured surfaces of the specimens were observed, and the shear deformation is enhanced by the addition of CTM. The presence of CTM also increases the melt flowability and decreases the shrinkage of the composites. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45515.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号