首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study deals with a comprehensive thermodynamic modeling of a combined heat and power (CHP) system in a paper mill, which provides 50 MW of electric power and 100 ton h?1 saturated steam at 13 bars. This CHP plant is composed of air compressor, combustion chamber (CC), Air Preheater, Gas Turbine (GT) and a Heat Recovery Heat Exchanger. The design parameters of this cycle are compressor pressure ratio (rAC), compressor isentropic efficiency (ηAC), GT isentropic efficiency (ηGT), CC inlet temperature (T3), and turbine inlet temperature (T4). In the multi‐objective optimization three objective functions, including CHP exergy efficiency, total cost rate of the system products, and CO2 emission of the whole plant, are considered. The exergoenvironmental objective function is minimized whereas power plant exergy efficiency is maximized using a Genetic algorithm. To have a good insight into this study, a sensitivity analysis of the results to the interest rate as well as fuel cost is performed. The results show that at the lower exergetic efficiency, in which the weight of exergoenvironmental objective is higher, the sensitivity of the optimal solutions to the fuel cost is much higher than the location of the Pareto Frontier with the lower weight of exergoenvironmental objective. In addition, with increasing exergy efficiency, the purchase cost of equipment in the plant is increased as the cost rate of the plant increases. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Pouria Ahmadi  Ibrahim Dincer   《Energy》2010,35(12):5161-5172
In the present work, a combined heat and power plant for cogeneration purposes that produces 50 MW of electricity and 33.3 kg/s of saturated steam at 13 bar is optimized using genetic algorithm. The design parameters of the plant considered are compressor pressure ratio (rAC), compressor isentropic efficiency (ηcomp), gas turbine isentropic efficiency (ηGT), combustion chamber inlet temperature (T3), and turbine inlet temperature (TIT). In addition, to optimally find the optimum design parameters, an exergoeconomic approach is employed. A new objective function, representing total cost rate of the system product including cost rate of each equipment (sum of the operating cost, related to the fuel consumption) and cost rate of environmental impact (NOx and CO) is considered. Finally, the optimal values of decision variables are obtained by minimizing the objective function using evolutionary genetic algorithm. Moreover, the influence of changes in the demanded power on various design parameters are parametrically studied for 50, 60, 70 MW of net power output. The results show that for a specific unit cost of fuel, the values of design parameters increase, as the required, with net power output increases. Also, the variations of the optimal decision variables versus unit cost of fuel reveal that by increasing the fuel cost, the pressure ratio, rAC, compressor isentropic efficiency, ηAC, turbine isentropic efficiency, ηGT, and turbine inlet temperature (TIT) increase.  相似文献   

3.
Located in the south of Iran, Jiroft Paper Mill Company requires an integrated combined heat and power plant, which can provide 50 MW of electric power and 100 ton h?1 saturated steam at 13 bar, to produce paper from an adjacent eucalyptus forest. The plant is composed of an air compressor, combustion chamber, air preheater, turbine, as well as a heat recovery steam generator. The design parameters of the plant were chosen as: compressor pressure ratio (rc), compressor isentropic efficiency (ηAC), gas turbine isentropic efficiency (ηT), combustion chamber inlet temperature (T3), and turbine inlet temperature (T4). In order to optimally find the design parameters a thermoeconomic approach has been followed. An objective function representing the total cost of the plant in terms of dollar per second was defined as the sum of the operating cost related to the fuel consumption and the capital investment for equipment purchase and maintenance costs. Subsequently, different parts of the objective function have been expressed in terms of decision variables. Finally, the optimal values of decision variables were obtained by minimizing the objective function using sequential quadratic programming. The influence of changes in the demanded power and steam on the design parameters has also been studied for 40, 50, 60, and 70 MW of net power output, and 100, 120, and 150 ton h?1 of saturated steam mass flow rate. Finally, the sensitivity analysis of change in design parameters with change in fuel or investment cost was performed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper a gas turbine power plant with intercooler is modeled and optimized. The intercooler is modeled in details using the ε ? NTU method. Air compressor pressure ratio, compressor isentropic efficiency, gas turbine isentropic efficiency, turbine inlet temperature, cooling capacity of the absorption chiller, recuperator effectiveness as well as eight parameters for configuration of the intercooler are selected as design variables. Multi‐objective genetic algorithm is applied to optimize the total cost rate and total cycle efficiency simultaneously. Two plants including an intercooler and with/without air preheater are studied separately. It is observed that the air compressor pressure ratio in the HP compressor is higher than the LP compressor in both cases and its differences are higher for a plant without an air preheater. Actually the air compressor pressure ratio is found to be about 8.5% lower than the ideal value and 9.5% higher than the ideal value in the LP compressor and HP compressor, respectively, in the case with an air preheater. Moreover, a correlation for intercooler pressure drop in terms of its effectiveness was derived in the optimum situation for each case. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 42(8): 704–723, 2013; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21051  相似文献   

5.
A comprehensive exergy, exergoeconomic and environmental impact analysis and optimization is reported of several combined cycle power plants (CCPPs). In the first part, thermodynamic analyses based on energy and exergy of the CCPPs are performed, and the effect of supplementary firing on the natural gas-fired CCPP is investigated. The latter step includes the effect of supplementary firing on the performance of bottoming cycle and CO2 emissions, and utilizes the first and second laws of thermodynamics. In the second part, a multi-objective optimization is performed to determine the “best” design parameters, accounting for exergetic, economic and environmental factors. The optimization considers three objective functions: CCPP exergy efficiency, total cost rate of the system products and CO2 emissions of the overall plant. The environmental impact in terms of CO2 emissions is integrated with the exergoeconomic objective function as a new objective function. The results of both exergy and exergoeconomic analyses show that the largest exergy destructions occur in the CCPP combustion chamber, and that increasing the gas turbine inlet temperature decreases the CCPP cost of exergy destruction. The optimization results demonstrates that CO2 emissions are reduced by selecting the best components and using a low fuel injection rate into the combustion chamber.  相似文献   

6.
In this study, the performance of several gas turbine engines has been investigated using computational modelling based on the actual manufacturer's data. Further, the study focuses on evaluating the impact of varying the configuration of the compressor on overall engine performance based on the first and second laws of thermodynamics. The results confirm that the main source of irreversibilities occurs in the combustion chamber in all cases. The exergetic efficiency of the gas turbine engine significantly varies with compressor configurations, type of compressors, load variation, climatic condition, and isentropic efficiency. The engine capacity and high‐pressure turbine inlet temperature govern the gas turbine performance, and higher values are more favourable. The gas turbine exergetic efficiency drops off when the power setting adjusted at part‐load and at high ambient temperature. The most optimal gas turbine performance is located at the single axial compressor case, followed by the axial‐centrifugal compressor and then the centrifugal–centrifugal compressor.  相似文献   

7.
Y.B. Tao  Y.L. He  W.Q. Tao 《Applied Energy》2010,87(10):3065-3072
The experimental system for the transcritical CO2 residential air-conditioning with an internal heat exchanger was built. The effects of working conditions on system performance were experimentally studied. Based on the experimental dada, the second law analysis on the transcritical CO2 system was performed. The effects of working conditions on the total exergetic efficiency of the system were investigated. The results show that in the studied parameter ranges, the exergetic efficiency of the system increases with the increases of gas cooler side air inlet temperature, gas cooler side air inlet velocity and evaporating temperature. And it will decrease with the increases of evaporator side air inlet temperature and velocity. Then, a complete exergetic analysis was performed for the entire CO2 transcritical cycle including compressor, gas cooler, expansion valve, evaporator and internal heat exchanger under different working conditions. The average exergy loss in gas cooler is the highest one under all working conditions which is about 30.7% of the total exergy loss in the system. The second is the average exergy loss in expansion valve which is about 24.9% of the total exergy loss, followed by the exergy losses in evaporator and compressor, which account for 21.9% and 19.5%, respectively. The exergy loss in internal heat exchanger is the lowest one which is only about 3.0%. So in the optimization design of the transcritical CO2 residential air-conditioning system more attentions should be paid to the gas cooler and expansion valve.  相似文献   

8.
Combined cycle configuration has the ability to use the waste heat from the gas turbine exhaust gas using the heat recovery steam generator for the bottoming steam cycle. In the current study, a natural gas‐fired combined cycle with indirectly fired heating for additional work output is investigated for configurations with and without reheat combustor (RHC) in the gas turbine. The mass flow rate of coal for the indirect‐firing mode in circulating fluidized bed (CFB) combustor is estimated based on fixed natural gas input for the gas turbine combustion chamber (GTCC). The effects of pressure ratio, gas turbine inlet temperature, inlet temperatures to the air compressor and to the GTCC on the overall cycle performance of the combined cycle configuration are analysed. The combined cycle efficiency increases with pressure ratio up to the optimum value. Both efficiency and net work output for the combined cycle increase with gas turbine inlet temperature. The efficiency decreases with increase in the air compressor inlet temperature. The indirect firing of coal shows reduced use with increase in the turbine inlet temperature due to increase in the use of natural gas. There is little variation in the efficiency with increase in GTCC inlet temperature resulting in increased use of coal. The combined cycle having the two‐stage gas turbine with RHC has significantly higher efficiency and net work output compared with the cycle without RHC. The exergetic efficiency also increases with increase in the gas turbine inlet temperature. The exergy destruction is highest for the CFB combustor followed by the GTCC. The analyses show that the indirectly fired mode of the combined cycle offers better performance and opportunities for additional net work output by using solid fuels (coal in this case). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
《能源学会志》2014,87(2):81-88
In this paper, a gas turbine cycle is modeled to investigate the effects of important operating parameters like compressor inlet temperature (CIT), turbine inlet temperature (TIT) and pressure ratio (PR) on the overall cycle performance and CO2 emissions. Such effects are also investigated on the exergy destruction and exergy efficiency of the cycle components. Furthermore, multiple polynomial regression models are developed to correlate the response variables (performance characteristics) and predictor variables (operating parameters). The operating parameters are then optimized. According to the results, operating parameters have a significant effect on the cycle performance and CO2 emissions. The largest exergy destruction is found in the combustion chamber with lowest exergy efficiency. The regression models have appeared to be a good estimator of the response variables. The optimal operating parameters for maximum performance have been determined as 288 K for CIT, 1600 K for TIT and 23.2 for PR.  相似文献   

10.
建立了考虑压降的开式回热燃气轮机热电冷联产装置的有限时间热力学模型,导出了各个部件的相对压降和各个热流率与压气机进口相对压降的关系式,以第一定律效率、[火用]输出率、[火用]效率和利润率为目标,在无燃料消耗和装置尺寸约束下,通过数值计算发现分别存在最佳的压气机进口相对压降使[火用]输出率和利润率取得最优值,进一步优化压比,得到了最大[火用]输出率和利润率,分别存在最佳的供热温度使最大[火用]输出率和利润率取得双重最大值,以利润率为设计目标能够减小装置的尺寸.在燃料消耗和装置尺寸约束下,优化了压气机进口相对压降,得到了最优效率,同时各部件流通面积分配也得到了优化.回热能够增大装置的利润率和效率.  相似文献   

11.
There are many works on improving the performance of a cogeneration plant such as the implementation of a recuperator. In previous works, the authors modelled a gas turbine cycle considering the recuperator as a black box. In this paper, a cogeneration plant is modeled and optimized with details of recuperator parameters. For this purpose, 13 design variables for a plant as well as a recuperator are selected. Then, a genetic algorithm is applied to optimize exergy efficiency and total cost rate, simultaneously. This work included Energy, Economy, and Environmental factors which with Exergy provided 4E analysis. A 36% decrease in total cost and a 33% increase in exergy efficiency in comparison with a simple gas turbine system were found. The above results for a gas turbine with a preheater and inlet cooling system reveal a 36% decrease in total cost and 35% increases in exergy efficiency. In addition, the optimum recuperator design parameters reveal that, higher effectiveness is more important than the investment cost. Moreover, a plant with higher exergy efficiency needs a recuperator with a lower pressure drop. Finally sensitivity analysis for variation of objectives functions with a change in fuel cost and interest rate are performed.  相似文献   

12.
The gas turbine power output and efficiency decrease with increasing ambient temperature. With compressor inlet air cooling, the air density and mass flow rate as well as the gas turbine net power output increase. The inlet cooling techniques include vapor or absorption refrigeration systems, evaporative cooling systems and thermal energy storage (TES) systems. In this paper the thermoeconomic analysis of ice (latent) thermal energy storage system for gas turbine inlet cooling application was performed. The optimum values of system design parameters were obtained using genetic algorithm optimization technique. The objective function included the capital and operational costs of the gas turbine, vapor compression refrigeration system, without (objective function I) and with (objective function II) corresponding cost due to the system exergy destruction. For gas turbines with net power output in the range of 25-100 MW, the inlet air cooling using a TES system increased the power output in the range of 3.9-25.7%, increased the efficiency in the range 2.1-5.2%, while increased the payback period from about 4 to 7.7 years.  相似文献   

13.
This study provides a computational analysis to investigate the effects of cycle pressure ratio, turbine inlet temperature (TIT), and ambient relative humidity (φ) on the thermodynamic performance of an indirect intercooled reheat regenerative gas turbine cycle with indirect evaporative cooling of the inlet air and evaporative aftercooling of the compressor discharge. Combined first and second‐law analysis indicates that the exergy destruction in various components of gas turbine cycles is significantly affected by compressor pressure ratio and turbine inlet temperature, and is not at all affected by ambient relative humidity. It also indicates that the maximum exergy is destroyed in the combustion chamber; which represents over 60% of the total exergy destruction in the overall system. The net work output, first‐law efficiency, and the second‐law efficiency of the cycle significantly varies with the change in the pressure ratio, turbine inlet temperature and ambient relative humidity. Results clearly shows that performance evaluation based on first‐law analysis alone is not adequate, and hence more meaningful evaluation must include second‐law analysis. Decision makers should find the methodology contained in this paper useful in the comparison and selection of gas turbine systems. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
This study deals with the energetic and exergetic performance assessment of a combined heat and power system with micro gas turbine (MGTCHP). Quantitative energy and exergy balance for each component and the whole MGTCHP system was considered, while energy and exergy consumption within the system were determined. The performance characteristics of this MGTCHP system were evaluated using energy and exergy analyses methods. The energetic and exergetic efficiencies of the MGTCHP system are calculated as 75.99% with 254.55 kW (as 99.15 kW—electrical and 155.40 kW—hot water@363.15 K) and 35.80% with 123.61 kW (as 99.15 kW—electrical and 24.46 kW—hot water@363.15 K), respectively. The maximum energy loss and exergy consumption occur at 44.03 kW in the stack gas and 129.61 kW in the combustion chamber, respectively. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
A capillary tube‐based CO2 heat pump is unique because of the transcritical nature of the system. The transcritical cycle has two independent parameters, pressure and temperature, unlike the subcritical cycle. A comparative study for various operating conditions, based on system COP and exergetic efficiency, of a capillary tube and a controllable expansion valve‐based transcritical carbon dioxide heat pump systems for simultaneous heating and cooling at 73 and 4°C, respectively, is presented here. Two optimized capillary tubes having diameter of 1.5 and 1.6 mm are compared with an equivalent controllable throttle valve. Heat transfer and fluid flow effects are included in the gas cooler and evaporator model and capillary tube employs the homogeneous flow model to simulate two‐phase flow. Subcritical and supercritical thermodynamic and transport properties of CO2 are calculated employing a precision in‐house property code. Optimization of effective distribution of total heat exchanger area ratio between gas cooler and evaporator is investigated. The exergetic efficiency is better in case of the capillary tube than that of a controllable throttle valve‐based system. Capillary tube‐based system is shown to be quite flexible regarding changes in ambient temperature, almost behaving to offer an optimal pressure control just like the controllable expansion valve yielding both, maximum system COP and maximum exergetic efficiency. Relatively at a smaller diameter, the capillary tube exhibits better exergetic efficiency. Capillary tube length is the critical parameter that influences system optimum conditions. The exergy flow diagram exhibits that compressor, gas cooler and capillary tube contribute a larger share, in that order, to system irreversibility. It is fairly established in this study that a capillary tube can be a good engineering option for small capacity systems in lieu of an expansion valve, which has been thought of as the only possible solution to attain the pressure optimization, an important feature of all transcritical CO2 systems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
A CO2‐capturing H2O turbine power generation system based on oxy‐fuel combustion method is proposed to decrease CO2 emission from an existing thermal power generation system (TPGS) by utilizing steam produced in the TPGS. A high efficient combined cycle power generation system (CCPS) with reheat cycle is adopted as an example of existing TPGSs into which the proposed system is retrofitted. First, power generation characteristics of the proposed CO2‐capturing system, which requires no modification of the CCPS itself, are estimated. It is shown through simulation study that the proposed system can reduce 26.8% of CO2 emission with an efficiency decrease by 1.20% and an increase power output by 23.2%, compared with the original CCPS. Second, in order to improve power generation characteristics and CO2 reduction effect of the proposed system, modifications of the proposed system are investigated based on exergetic flow analyses, and revised systems are proposed based on the obtained results. Finally, it is shown that a revised proposed system, which has the same turbine inlet temperature as the CCPS, can increase power output by 33.6%, and reduce 32.5% of CO2 emission with exergetic efficiency decrease by 1.58%, compared with the original CCPS. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
A solar transcritical CO2 power cycle for hydrogen production is studied in this paper. Liquefied Natural Gas (LNG) is utilized to condense the CO2. An exergy analysis of the whole process is performed to evaluate the effects of the key parameters, including the boiler inlet temperature, the turbine inlet temperature, the turbine inlet pressure and the condensation temperature, on the system power outputs and to guide the exergy efficiency improvement. In addition, parameter optimization is conducted via Particle Swarm Optimization to maximize the exergy efficiency of hydrogen production. The exergy analysis indicates that both the solar and LNG equally provide exergy to the CO2 power system. The largest amount of exergy losses occurs in the solar collector and the condenser due to the great temperature differences during the heat transfer process. The exergy loss in condenser could be greatly reduced by increasing the LNG temperature at the inlet of the condenser. There exists an optimum turbine inlet pressure for achieving the maximum exergy efficiency. With the optimized turbine inlet pressure and other parameters, the system is able to provide 11.52 kW of cold exergy and 2.1 L/s of hydrogen. And the exergy efficiency of hydrogen production could reach 12.38%.  相似文献   

18.
Exergy and energy analyses were carried out in each component to study the effect of compression ratio, ambient temperature, and load on energy losses and exergy destruction. The highest exergy destruction occurred in the combustion chamber and the lowest exergy destruction occurred in the compressor. Also, the maximum thermal efficiency of the gas turbine unit and second law efficiency are 33.77% and 32.25%, respectively. The peak load of the selected power station is 65 MW. This study reveals possible areas of focus to improve performance of the power plant in the future.  相似文献   

19.
This paper provides an exergy analysis of the multistage cascade refrigeration cycle used for natural gas liquefaction. The equations of exergy destruction and exergetic efficiency for the main cycle components such as evaporators, condensers, compressors, and expansion valves are developed. The relations for the total exergy destruction in the cycle and the cycle exergetic efficiency are obtained. Also, an expression for the minimum work requirement for the liquefaction of natural gas is developed. It is shown that the minimum work depends only on the properties of the incoming and outgoing natural gas, and it increases with decreasing liquefaction temperature. The minimum work for a typical natural gas inlet and exit state is determined to be 456.8 kJ kg?1 of liquefied natural gas (LNG), which corresponds to a coefficient of performance (COP) of 1.8. Using a typical actual work input value; the exergetic efficiency of the multistage cascade refrigeration cycle is determined to be 38.5% indicating a great potential for improvements. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper energy, exergy and thermoeconomic analysis of a combined cooling, heating and power (CCHP) system has been performed. Applying the first and second laws of thermodynamics and economic analysis, simultaneously, has made a powerful tool for the analysis of energy systems such as CCHP systems. The system integrates air compressor, combustion chamber, gas turbine, dual pressure heat recovery steam generator (HRSG) and absorption chiller to produce cooling, heating and power. In fact, the first and second laws of thermodynamics are combined with thermoeconomic approaches. Next, computational analysis is performed to investigate the effects of below items on the fuel consumption, values of cooling, heating and net power output, the first and second laws efficiencies, exergy destruction in each of the components and total cost of the system. These items include the following: air compressor pressure ratio, turbine inlet temperature, pinch temperatures in dual pressure HRSG, pressure of steam that enters the generator of absorption chiller and process steam pressure. Decision makers may find the methodology explained in this paper very useful for comparison and selection of CCHP systems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号