首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
李艳红  吴锋  吴川  白莹 《功能材料》2007,38(12):2008-2010,2014
用碳热还原法制备了Sn-C复合材料,通过XRD及SEM对其进行表征,并通过恒流充放电循环和慢速扫描循环伏安等方法对其电化学嵌脱锂性能做了研究.结果表明:SnO2碳热还原成金属Sn,晶粒尺寸约为42.8nm.该材料的首次嵌脱锂比容量分别可以达到1024.9和632.8mAh/g,循环15周以后的脱锂比容量为395.9mAh/g.  相似文献   

2.
竹碳的结构及电化学性能研究   总被引:4,自引:0,他引:4  
用XRD、SEM和EDS对由天然竹子烧制而成的竹碳进行了组织结构表征。表明竹碳主要呈无定形碳结构 ,并含有钾等金属元素。对竹碳的电化学嵌脱锂性能进行了初步的研究 ,竹碳的首次嵌锂容量约 2 0 0mAh g ,但不可逆容量较大。除去竹碳中的钾等金属离子并进行球磨处理 ,竹碳的首次嵌锂容量超过 4 0 0mAh g ,经过几次充放电循环以后 ,处理后的竹碳显示出良好的充放电效率。  相似文献   

3.
采用真空蒸镀法制备了金属Sb膜电极, 通过XRD、SEM、恒流充放电循环、循环伏安(CV)等方法, 研究了Sb膜电极的结构、形貌和电化学性能, 并对嵌脱锂机理进行了分析. 结果表明: 蒸镀后, 金属Sb为六方晶体, (003)晶面择优取向. Sb膜电极与基底铜箔的微观形貌接近, Sb金属以片层颗粒堆积在Cu箔颗粒上面. 在首次嵌锂过程中, 能观察到Li3Sb合金的生成和Sb相的消失, 在脱锂之后, 能观察到Sb相的重新出现和Li3Sb合金的消失, 且Sb相还是回复到(003)面择优相. Sb膜电极的首次充放电比容量分别为652和454 mAh/g, 循环16周后放电比容量还为300 mAh/g, 性能远优于Sb粉电极.  相似文献   

4.
以化学还原法制备了SnSb0.18合金,并对合金的成分、组成及形貌等进行了分析;对合金的嵌脱锂性能研究发现,SnSb0.18合金能与锂形成多种合金,具有良好的嵌脱锂性能,首次循环的库仑效率为74.7%,放电容量可达到611mAh·g-1.研究中还发现热处理能有效地提高电极的循环寿命,增大放电容量,合金电极在氩气保护、300℃温度下处理2h,其40次循环之后比容量仍能保持在440 mAh·g-1.  相似文献   

5.
用碳热还原法制备了Sn-MCMB复合材料,通过XRD、SEM、恒流充放电循环和慢速扫描循环伏安(CV)等方法对其电化学嵌脱锂性能做了研究。结果表明:SnO2被MCMB还原成金属Sn圆球颗粒,吸附在McMB上的球径平均尺寸为500nm,而未吸附的为15μm,均匀分散在MCMB微球之间。该材料的首次嵌脱锂比容量分别可以达到892和657mAh/g,库仑效率为73%,循环14周以后的脱锂比容量为366mAh/g。  相似文献   

6.
采用共沉淀法制备了锡基复合氧化物SnPbO2,再用氢还原法将该复合氧化物还原,得到Pb-Sn金属复合粉.XRD测试分析发现,400℃时无定型的SnPbO2完全转化成Pb-Sn金属复合粉.通过SEM对Pb-Sn复合粉进行形貌观察发现,Pb-Sn颗粒的平均粒径约为200nm.利用恒电流电池自动测试仪测试了Pb-Sn复合粉的电化学性能,结果表明,其首次嵌锂容量为370mAh/g,首次脱锂容量为330mAh/g;第20周的嵌锂容量为280mAh/g,脱锂容量为270mAh/g.充放电反应机理可能为锂与Pb-Sn中活性基物质(Sn)的合金化/去合金化反应.  相似文献   

7.
以FePO4·xH2O、V2O5、NH4H2PO4和Li2CO3为原料,以乙二酸为还原剂,在常温常压下经机械活化并还原嵌锂,形成无定形的5LiFePO4·Li3V2(PO4)3前驱体混合物,然后低温热处理合成出晶态的复合正极材料5LiFePO4·Li3V2(PO4)3.分别研究了复合材料的物相结构、形貌、电化学性能.SEM图像表明合成的材料粒径小、分布均匀,一次粒径为100~200nm.充放电测试结果表明,650℃烧结12h制得的复合正极材料5LiFePO4·Li3V2(PO4)3电化学性能优良,1C放电比容量高达158mAh/g,达到该复合材料的理论比容量(156.8mAh/g).复合材料具有良好的倍率性能和循环性能,在10C放电比容量高达114mAh/g,100次循环后容量几乎无衰减.循环伏安测试表明,复合材料的脱嵌锂性能优良,且明显优于单一的LiFePO4和Li3V2(PO4)3.  相似文献   

8.
使用改进固相法,通过正交实验,考察了锂铁比、葡萄糖加入量,焙烧温度、焙烧时间四因素对LiFePO4正极材料电化学性能的影响.在优化LiFePO4合成条件下合成出具有优良电化学性能的LiFePO4/C正极材料,此方法避免使用球磨机,有利于工业化生产.使用XRD、SEM、循环伏安、交流阻抗对合成产物进行一系列性能分析,室温下0.1C倍率首次放电比容量139.6mAh/g,循环活化后容量上升并稳定至148mAh/g左右,30次循环后容量仍保持在147.4mAh/g.  相似文献   

9.
采用真空悬浮熔炼与高能球磨制了MSb2(M-Co和Fe)型合金粉末,利用恒电流电池测试仪研究了其电化学性能,研究发现CoSb2和FeSb2电极的嵌/脱锂平台在0.8和1.0V左右,在20mA/g电流密度下的首次嵌锂反应的可逆容量为430mAh/g,电流密度为100mA/g条件下,CoSb2首次嵌锂反应的可逆容量为380mAh/g,FeSb2首次嵌锂反应的可塑容量340mAh/g,,所以,MSb2型金属锑化物可以作为锂离子电池极材料的假选材料。  相似文献   

10.
球磨法制备锂金属氮化物及电化学性能研究   总被引:4,自引:0,他引:4  
采用高能球磨法制备了锂离子电池负极材料锂金属氮化物Li3-xMxN(M=Co,Cu等)。制备的锂金属氮化物具有较高的电化学活性和充放电可逆性,可以用作锂离子电池的高容量负极材料。所制备的Li2.6Co0.4N前10次循环的脱嵌锂容量高达880mAh·g-1。Li2.6Co0.2Cu0.2N最初几个循环的脱嵌锂容量为750mAh·g-1,45次充放电循环后的容量保持率为80%。Li2.6Co0.2Fe0.2N是含有Li2.6Co0.4N的两相或多相混合物,40次充放电循环后脱锂容量为560mAh·g-1,相对第二次脱锂容量的保持率为82%。  相似文献   

11.
对商用MmMn0.4Co0.7Al0.3Ni3.4贮氢合金中添加多壁碳纳米管(CNTs)、Ni的电化学性能进行了研究.结果表明,CNTs的加入可以提高电极的放电容量和初始活化性能,合金中添加CNTs、CNTs+Ni的电极完全活化只需11个循环,其最大放电容量分别为255、271mAh/g.而添加Ni的电极则需24个循环才达到最大容量(245mAh/g);合金中添加CNTs、CNTs+Ni的电极具有更高的放电平台和更好的高倍率放电性能(HRD),在1000mAh/g放电电流下,添加CNTs、CNTs+Ni、Ni以及未添加电极的HRD值依次为80.5%、83.9%、66.9%和62.4%,线性极化和电化学阻抗测试表明,CNTs的加入可有效减少欧姆电阻、提高电极表面的电荷迁移速率,更有利于在大电流下进行放电.  相似文献   

12.
李嵩  孙俊才  季世军 《功能材料》2005,36(12):1970-1973
为了提高合金的放电容量和高倍率放电性能,通过球磨Zr7Ni10合金对Zr0.5Ti0.5Mn0.7V0.2Co0.1Ni1.2合金表面进行改性,并研究了不同Zr,Ni10量和球磨时间对合金的相结构和电化学性能的影响。当采用8%(质量分数)Zr,Ni10进行球磨1h后,合金仍保持晶态,在50mAh/g电流条件下经过9次循环达到最大放电容量266mAh/g,比未球磨合金提高了约20%,而且在300mA/g电流条件下仍能保持最大放电容量的85%。随着球磨时间的增加,合金逐渐转为非晶态,合金的放电容量也迅速降低。非晶化合金在800℃进行热处理后大部分重新晶化,经过22次循环达到最大放电容量200mAh/g。  相似文献   

13.
对商用MmMn0.4Co0.7Al0.3Ni3.4贮氢合金中添加多壁碳纳米管(CNTs)、Ni的电化学性能进行了研究.结果表明,CNTs的加入可以提高电极的放电容量和初始活化性能,合金中添加CNTs、CNTs+Ni的电极完全活化只需11个循环,其最大放电容量分别为255、271mAh/g.而添加Ni的电极则需24个循环才达到最大容量(245mAh/g);合金中添加CNTs、CNTs+Ni的电极具有更高的放电平台和更好的高倍率放电性能(HRD),在1000 mAh/g放电电流下,添加CNTs、CNTs+Ni、Ni以及未添加电极的HRD值依次为80.5%、83.9%、66.9%和62.4%,线性极化和电化学阻抗测试表明,CNTs的加入可有效减少欧姆电阻、提高电极表面的电荷迁移速率,更有利于在大电流下进行放电.  相似文献   

14.
孙杰  赵东林  刘辉  景磊  迟伟东  沈曾民 《功能材料》2012,43(15):2027-2030
以二茂铁为铁源,石油渣油为碳源,通过加压热解和空气氧化制备了碳包覆空心Fe3O4纳米粒子。采用X射线衍射(XRD)、透射电镜(TEM)以及高倍透射电镜(HRTEM)等测试方法对样品的形貌和结构进行表征。采用恒流充放电和交流阻抗方法测试碳包覆空心Fe3O4纳米粒子作为锂离子电池负极材料的电化学性能。在电流密度为0.2mA/cm2时,首次放电比容量高达1294.7mAh/g,30次循环之后其放电比容量为392.1mAh/g;电流密度为1mA/cm2时,首次放电比容量为216.3mAh/g,30次循环之后其放电比容量为113mAh/g。  相似文献   

15.
用机械合金化法制备出MgNi及MgNi-TiNi0.56M0.44(M=Al、Fe)复合合金,并研究该系列合金的相结构和电化学性能. XRD结果表明所合成的几种合金均为非晶态;充放电结果表明:MgNi-TiNi0.56M0.44(M=Al、Fe)复合合金的初始容量比纯MgNi合金低,但循环寿命有较大的改善,其中MgNi-TiNi0.56Al0.44合金放电容量最大,达380.64mAh/g,经50次循环后容量保持率是48.97%;动电位扫描结果表明复合后合金电极的抗腐蚀能力增强;循环伏安法和电化学阻抗谱法研究结果表明:复合后降低了电极表面的电子转移电阻和H原子的扩散阻抗,增强了电极表面的电化学催化性能.  相似文献   

16.
碳源对LiFePO_4/C正极材料性能的影响   总被引:1,自引:0,他引:1  
以FePO_4·2H_2O、Li_2CO_3和柠檬酸/酒石酸/抗坏血酸为原料,经机械球磨后在惰性气氛中高温煅烧合成LiFePO_4/C正极材料.研究了不同碳源对LiFePO_4结构、形貌及电化学性能的影响.重点考察了碳源为酒石酸时,不同合成温度对材料性能的影响.采用XRD、SEM以及电化学测试等手段对目标产物进行了结构表征和性能测试.结果表明,以酒石酸做碳源时,合成的正极材料物相单一,颗粒细小,粒度均匀,并且具有优良的电化学性能.在室温下以0.1C倍率充放电,首次放电比容量可达155mAh/g,1.0C首次放电比容量为120mAh/g,经过100次循环以后容量仍有109mAh/g.  相似文献   

17.
以二水乙酸锌、一缩二乙二醇为原料,通过溶胶-凝胶法制备出氧化锌/螺旋纳米碳纤维(ZnO/HCNFs)复合材料。使用X射线衍射仪(XRD)、热重分析仪(TG)和扫描电子显微镜(SEM)等表征手段研究了ZnO/HCNFs复合材料的形貌结构,通过恒流充放电测试仪对材料的电化学性能进行测试。结果表明:ZnO颗粒均匀负载于HCNFs表面,粒径约为20~50nm。ZnO/HCNFs复合材料在200mA/g的电流密度下,其首次充放电比容量分别达到977mAh/g与788mAh/g,库仑效率为81%,经过100次循环以后,容量仍保持在501mAh/g,电化学性能较优异。  相似文献   

18.
钟伟攀  陆雷  杨晖 《功能材料》2012,43(11):1425-1430
采用共沉淀-高温固相烧结法,控制合成条件,以不同的沉淀剂(Na2CO3、NaOH)制备出正极材料。通过XRD、SEM及电池测试系统对不同沉淀剂制备的正极材料进行结构、形貌和电化学性能的表征,对比两者存在的优缺点。研究结果表明,以NaOH为沉淀剂制备的正极材料有更好的层状结构,形貌也更好,充放电性能和倍率性能也较好。其首次放电比容量达到了187.9mAh/g,最高可达196.2mAh/g,50次充放电循环后,容量保持率为81.6%;以Na2CO3为沉淀剂制备的正极材料的放电比容量较低,但容量保持率较高,为85.3%。  相似文献   

19.
以碳纳米管和氧化石墨烯为原料,二者按5∶3混合超声分散再高温还原制备碳纳米管/石墨烯/天然石墨(CNTs/rGO/NG)锂离子复合负极材料。采用扫描电镜(SEM)、X射线衍射(XRD)、红外光谱(FTIR)和电化学测试等分析技术对复合材料的形貌、结构、电化学进行表征。结果表明:石墨烯和碳纳米管在天然石墨表面形成三维立体网络结构。与纯天然石墨相比,CNTs/rGO/NG复合材料具有良好的倍率性能和循环寿命,在0.1C时首次放电比容量为479mAh/g,可逆容量达473mAh/g,循环100次后容量为439.5mAh/g,容量保持率为92%,在0.5,1,5C不同电流倍率时容量依次为457,433,394mAh/g。  相似文献   

20.
彭鹏  刘宇  温兆银 《无机材料学报》2013,28(11):1195-1199
采用热裂解方法, 热解分散于聚偏二氟乙烯溶液中的硅和石墨, 得到了具有稳定电化学循环性能的Si/C/石墨复合负极材料。透射电子显微镜观察发现, 复合材料形貌为无定型碳包裹硅颗粒的核壳结构。通过系统研究不同Si粒径和石墨含量对电极电化学性能的影响, 发现Si颗粒粒径越小复合材料电化学循环稳定性能越优越, 适当的降低石墨含量有利于电极材料剩余比容量的提高。当Si粒径为50 nm, Si与石墨质量比1:1时, 电极材料具有1741.6 mAh/g的首次放电比容量和72.5%的首次库仑效率, 60次循环后, 可逆比容量保持在820 mAh/g。热解有机物形成碳包覆的结构能有效地改善硅基类负极材料的电化学循环性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号