首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A passive cluster model with the maximum lifetime was proposed for vehicle to vehicle communication based on the relative velocity. The cluster head was elected based on the average relative velocity and the neighbor list. The cluster lifetime was deduced as the function of the average relative velocity. The traffic safety messages were dissemi-nated to all cluster members by inter-cluster message broadcasting and intra-cluster message relaying in interconnected vehicular network. The link connectivity probability between the cluster head and members were deduced as the function of the vehicle density for inter-cluster broadcasting. The path connectivity probability between the cluster head and the neighbor cluster head was deduced as the function of the vehicle density and intra-cluster distance for on intra-cluster dis-semination. Simulation results show that the connected probability is suitable for vehicular network under the traffic den-sity constraints.  相似文献   

2.
A great interest in vehicular ad‐hoc networks has been noticed by the research community. General goals of vehicular networks are to enhance safety on the road and to ensure the convenience of passengers by continuously providing them, in real time, with information and entertainment options such as routes to destinations, traffic conditions, facilities' information, and multimedia/Internet access. Indeed, time efficient systems that have high connectivity and low bandwidth usage are most needed to cope with realistic traffic mobility conditions. One foundation of such a system is the design of an efficient gateway discovery protocol that guarantees robust connectivity between vehicles, while assuring Internet access. Little work has been performed on how to concurrently integrate load balancing, quality of service (QoS), and fault tolerant mechanisms into these protocols. In this paper, we propose a reliable QoS‐aware and location aided gateway discovery protocol for vehicular networks by the name of fault tolerant location‐based gateway advertisement and discovery. One of the features of this protocol is its ability to tolerate gateway routers and/or road vehicle failure. Moreover, this protocol takes into consideration the aspects of the QoS requirements specified by the gateway requesters; furthermore, the protocol insures load balancing on the gateways as well as on the routes between gateways and gateway clients. We discuss its implementation and report on its performance in contrast with similar protocols through extensive simulation experiments using the ns‐2 simulator. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
The emerging vehicular networks are targeted to provide efficient communications between mobile vehicles and fixed roadside units (RSU), and support mobile multimedia applications and safety services with diverse quality of service (QoS) requirements. In this paper, we propose a busy tone based medium access control (MAC) protocol with enhanced QoS provisioning for life critical safety services. By using busy tone signals for efficient channel preemption in both contention period (CP) and contention free period (CFP), emergency users can access the wireless channel with strict priority when they compete with multimedia users, and thus achieve the minimal access delay. Furthermore, through efficient transmission coordination on the busy tone channel, contention level can be effectively reduced, and the overall network resource utilization can be improved accordingly. We then develop an analytical model to quantify the medium access delay of emergency messages. Extensive simulations with Network Simulator (NS)-2 validate the analysis and demonstrate that the proposed MAC can guarantee reliable and timely emergency message dissemination in a vehicular network.  相似文献   

4.
Recent advances in intelligent transportation systems enable a broad range of potential applications that significantly improve the vehicle and road safety and facilitate the efficient dissemination of information among the vehicles. To assist the vehicle traffic, message broadcasting is a widely adopted technique for road safety. But efficient message broadcasting is a significant issue, especially in a high network density due to the broadcast storm problem. To solve this issue, several methods are proposed to eliminate the redundant transmission of safety packets. However, they lack in restricting the broadcasting region of safety messages, and the transmissions of safety packets outside the dangerous region, and force the vehicles to unnecessary detours. This paper proposes an adaptive multimode routing protocol, network condition, and application‐based data adaptive intelligent message routing in vehicular network (NetCLEVER) that supports 2 modes of operation such as message broadcasting and intelligent routing. In message broadcasting mode, the NetCLEVER decides the dangerous region of the network by considering the changes of neighbor vehicles velocity, instead of current vehicle velocity, because a vehicle decision in velocity is interdependent with the preceding vehicles. In intelligent routing mode, the NetCLEVER exploits the cuckoo search optimization in routing by taking into account multiple routing factors such as the road topology of intersections and traffic signals and their impact on link stability, which improves the reliability of routing packets significantly. The performance evaluation illustrates that the proposed NetCLEVER improves reliable wireless communication as well as road safety in vehicular ad hoc networks.  相似文献   

5.
This paper focuses on inter-vehicular networks providing warning delivery service. As soon as a danger is detected, the propagation of a warning message is triggered, with the aim of guaranteeing a safety area around the point in which the danger is located. Multiple broadcast cycles can be generated so that a given lifetime of the safety area is guaranteed. The service is based on multi-hop ad hoc inter-vehicular communications with a probabilistic choice of the relay nodes. The scenario we consider consists of high speed streets, such as highways, in which vehicles exhibit one-dimensional movements along the direction of the road. We propose an analytical model for the study of this service and derive performance indices such as the probability that a vehicle is informed, the average number of duplicate messages received by a vehicle and the average delay. Moreover, we use the model to discuss system design issues, which include the proper setting of the forwarding probability at each vehicle, so that a given probability to receive the warning can be guaranteed to all vehicles in the safety area. The model is validated against simulation results. Since it is very accurate, the model can be instrumental to the performance evaluation and design of broadcasting techniques in inter-vehicular networks.  相似文献   

6.
The use of Information and Communication Technology (ICT) as a copilot for the drivers has a potential to improve traffic safety and efficiency. A key challenge in integrating ICT in vehicular networks is to provide the mechanisms for the delivery of safety messages called beacons. In particular, finding the trade-off between providing sufficient coverage and controlling channel congestion remains the focus in the stipulated amendments for safety message transmissions. In this paper, we handle this trade-off by proposing a Multi-metric Power Control (MPC) approach, which uses application requirements and channel states to determine a transmit power for safety messages. The MPC gives a best-effort approach to satisfy the coverage range requirement of a message as specified by the application. Moreover, the concept distinguishes among message types to provide coverage differentiation. We show that the best-effort approach of providing coverage for different messages can control congestion and as a result improve awareness by minimizing beacon collisions. The performance analysis of MPC using discrete event simulation confirms its practicality.  相似文献   

7.
The wireless access in vehicular environment system is developed for enhancing the driving safety and comfort of automotive users. However, such system suffers from quality of service degradation for safety applications caused by the channel congestion in scenarios with high vehicle density. In the present work channel congestion is controlled jointly by road side unit, and vehicle. The present work supports vehicle to vehicle communication of authentic safe messages among authentic vehicles only. The road side unit reduces channel congestion by allowing only the authentic vehicles to participate in vehicle to vehicle communication, and by discarding unauthentic messages from the network. It revokes vehicles which are not authentic, and vehicles which are communicating unauthentic messages. Each vehicle also participates in the reduction of channel congestion by varying the size of beacon message dynamically, by removing the duplicate messages from message queue, and also by controlling the transmission power, and transmission range of a message during transmission. It further reduces the channel congestion by controlling the message generation rate using message generation rate control algorithm. Two different message generation rate control algorithm are proposed in the present work. In the first approach it maintains the channel load to an estimated initial value whereas the second approach increases the channel load till the percentage of message loss lies below a predefined threshold. The performance of the proposed scheme is studied on the basis of percentage of successful message reception, and percentage of message loss. The performance of the two message generation rate control algorithms are also compared in the present work.  相似文献   

8.
The emerging IEEE 802.11p standard adopts the enhanced distributed channel access (EDCA) mechanism as its Media Access Control (MAC) scheme to support quality-of-service (QoS) in the rapidly changing vehicular environment. While the IEEE 802.11 protocol family represents the dominant solutions for wireless local area networks, its QoS performance in terms of throughput and delay, in the highly mobile vehicular networks, is still unclear. To explore an in-depth understanding on this issue, in this paper, we develop a comprehensive analytical model that takes into account both the QoS features of EDCA and the vehicle mobility (velocity and moving directions). Based on the model, we analyze the throughput performance and mean transmission delay of differentiated service traffic, and seek solutions to optimally adjust the parameters of EDCA towards the controllable QoS provision to vehicles. Analytical and simulation results are given to demonstrate the accuracy of the proposed model for varying EDCA parameters and vehicle velocity and density.  相似文献   

9.
In vehicular networks, safety and comfort applications are two quite different kinds of applications to avoid the emergency traffic accident and enjoy the non‐emergency entertainment. The comfort application drives the challenges of new non‐emergency entertainments for vehicular ad hoc networks (VANETs). The comfort application usually keeps the delay‐tolerant capability; that is, messages initiated from a specific vehicle at time t can be delivered through VANETs to some vehicles within a given constrained delay time λ. In this paper, we investigate a new mobicast protocol to support comfort applications for a highway scenario in VANETs. All vehicles are located in a geographic zone (denoted as zone of relevance (ZOR)) at time t; the mobicast routing must disseminate the data message initiated from a specific vehicle to all vehicles that have ever appeared in ZOR at time t. This data dissemination must be performed before time t + λ through the carry‐and‐forward technique. In addition, the temporary network fragmentation problem is considered in our protocol design. Also, the low degree of channel utilization is kept to reserve the resource for safety applications. To illustrate the performance achievement, simulation results are examined in terms of message overhead, dissemination success rate, and accumulative packet delivery delay. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Vehicular ad-hoc network (VANET) is becoming a promising technology for improving the efficiency and the safety of intelligent transportation systems by deploying a wide variety of applications. Smart vehicles are expected to continuously exchange a huge amount of data either through safety or non-safety messages dedicated for road safety or infotainment and passenger comfort applications, respectively. One of the main challenges posed by the study of VANET is the data dissemination design by which messages have to be efficiently disseminated in a high vehicular speed, intermittent connectivity, and highly dynamic topology. In particular, broadcast mechanism should guarantee fast and reliable data delivery within a limited wireless bandwidth in order to fit the real time applications’ requirements. In this work, we propose a simple and efficient adaptive data dissemination protocol called “SEAD”. On the one hand, the originality of this work lies in its simplicity and efficiency regardless the application’s type. Simplicity is achieved through a beaconless strategy adopted to take into account the surrounding vehicles’ density. Thanks to a metric locally measured, each vehicle is able to dynamically define an appropriate probability of rebroadcast to mitigate the broadcast storm problem. Efficiency is manifested by reducing excessive retransmitted messages and hence promoting the network capacity and the transmission delay. The simulation results show that the proposed protocol offers very low packet drop ratio and network load while still maintaining a low end-to-end delay and a high packet delivery. On the other hand, SEAD protocol presents a robust data dissemination mechanism which is suitable either for safety applications or for other kinds of application. This mechanism is able to adapt the protocol performance in terms of packet delivery ratio to the application’s requirements.  相似文献   

11.
The collision prevention system is one of most important research issues on vehicle safety technology. Sending worming messages within the right time and reliable transmission will get prevention of a possible vehicle accident. The communication standards of vehicular networks (VANET) are unable to guarantee the delivery of critical messages within tight deadlines. Indeed, the transmission collisions are handled with probabilistic manner that can reduce the transmission latency; however, it is inept to predict an upper bound value of this delay to verify the deadline. In this paper, we propose a medium access protocol that ensures the delivery of critical messages within a deadline. It is a hard real-time system with delay constant guarantee. We are focusing on improving the EDCA medium access protocol to prioritize critical messages and to get access to the transmission channel within a predictable communication delay. We create a new enhanced access protocol that is compatible with the IEEE 802.11p VANET standards and adapted to real-time communication requirements related to the vehicle collision avoidance problem.  相似文献   

12.
A Mobicast Routing Protocol in Vehicular Ad-Hoc Networks   总被引:1,自引:0,他引:1  
In this paper, we present a “spatiotemporal multicast”, called a “mobicast”, protocol for supporting applications which require spatiotemporal coordination in vehicular ad hoc networks (VANETs). The spatiotemporal character of a mobicast is to forward a mobicast message to vehicles located in some geographic zone at time t, where the geographic zone is denoted as zone of relevance (ZOR). Vehicles located in ZOR at the time t must keep the connectivity to maintain the real-time data communication between all vehicles in ZOR. The connectivity is kept of all vehicles in ZOR through the vehicular ad hoc networks (VANETs). The connectivity of ZOR is lost if any vehicle in ZOR suddenly accelerates or decelerates its velocity. The temporal network fragmentation problem is occurred such that vehicle in ZOR cannot successfully receive the mobicast messages. To solve the problem, a new mobicast protocol is presented in this work to successfully disseminate mobicast messages to all vehicles in ZOR via a special geographic zone, called as zone of forwarding (ZOF). The main contribution of this work is to develop a new mobicast routing protocol to dynamically estimate the accurate ZOF to successfully disseminate mobicast messages to all vehicles in ZOR. To illustrate the performance achievement, simulation results are examined in terms of dissemination successful rate, packet overhead multiplication, packet delivery delay, and throughput.  相似文献   

13.
In delay tolerant vehicular networks, gossip is an efficient forwarding scheme, which significantly reduces the message transmission overhead while maintaining a relatively high transmission rate in the high mobility vehicular environment. This mechanism requires vehicles as the network nodes to forward messages according to the system-defined gossip probability in a cooperative and selfless way among all the vehicles in the system. However, in the real word vehicular networks, most of the vehicular nodes exhibit selfish and non-collaboration behaviors to reduce the gossip probability in order to save their own energy and other limited resources in the vehicular nodes. In this paper, we study how node selfishness influences the performance of energy-constrained gossip forwarding based vehicular networks. We consider two typical forms of selfishness in the realistic vehicular networks: individual selfishness and social selfishness, and study the networking performance by focusing on the average message transmission delay and mean transmission cost. First, we model the message transmission process with selfish behaviors in the gossip forwarding based delay tolerant vehicular networks using a continuous time Markov chain. Based on this useful model, we derive closed-form formulae for average message transmission delay and mean transmission cost. Then, we give extensive numerical results to analyze the impact of selfishness on system performance of the vehicular networks. The results show that gossip forwarding in delay tolerant vehicular networks is robust to selfish behaviors since even when they increase the message transmission delay, there is a gain on the message transmission cost.  相似文献   

14.
AMOEBA: Robust Location Privacy Scheme for VANET   总被引:2,自引:0,他引:2  
Communication messages in vehicular ad hoc networks (VANET) can be used to locate and track vehicles. While tracking can be beneficial for vehicle navigation, it can also lead to threats on location privacy of vehicle user. In this paper, we address the problem of mitigating unauthorized tracking of vehicles based on their broadcast communications, to enhance the user location privacy in VANET. Compared to other mobile networks, VANET exhibits unique characteristics in terms of vehicular mobility constraints, application requirements such as a safety message broadcast period, and vehicular network connectivity. Based on the observed characteristics, we propose a scheme called AMOEBA, that provides location privacy by utilizing the group navigation of vehicles. By simulating vehicular mobility in freeways and streets, the performance of the proposed scheme is evaluated under VANET application constraints and two passive adversary models. We make use of vehicular groups for anonymous access to location based service applications in VANET, for user privacy protection. The robustness of the user privacy provided is considered under various attacks.  相似文献   

15.
张键红  甄伟娜  邹建成 《通信学报》2014,35(Z2):191-195
在车载自组网(VANET)中许多服务和应用需要保护数据通信的安全,为提高驾驶的安全性和舒适性,一些与交通状况有关的信息就要被周期性地广播并分享给司机,如果用户的身份和信息没有隐私和安全的保证,攻击者就会通过收集和分析交通信息追踪他们感兴趣的车辆,因此,匿名消息身份验证是VANET中不可或缺的要求。另一方面,当车辆参与纠纷事件时,证书颁发机构能够恢复车辆的真实身份。为解决车载通信这一问题,郭等人在传统方案的基础上提出一种基于椭圆曲线的变色龙散列的隐私保护验证协议。虽然此方案较之前方案具有车辆身份可追踪性和高效率性,但分析表明此方案不满足匿名性。对郭等人的方案进行安全性分析并在此基础上做出改进。  相似文献   

16.
Safety message broadcasting may cause a broadcast storm in vehicular ad-hoc network without an effective feedback mechanism. In particular, with increasing number of vehicles, serious collisions and incurred long delays are not acceptable for emergency safety messages. In this paper, we proposed an advanced broadcast scheme by the functionality of distributed coordination function and multi-channel operation in dedicated short range communication to decrease collision probability and increase received ratio of safety messages. The proposed scheme can increases safety message transmission efficiency and reduce the latency by delicately designing a rebroadcast probability, choosing the channel and selecting the backoff timer. After broadcasting in the control channel, transmitters return to their original service channel. Then, the vehicles receiving the safety message should inform the others in the same service channel to switch to the control channel for the safety message. Afterwards, the vehicles broadcast the safety message once and go back to the original service channel. This method can inform the other vehicles in different channels to increase the broadcast penetration. The proposed scheme can work without global positioning system (GPS). However, GPS can adapt the rebroadcast probability on hot spots to enhance the efficiency of the proposed scheme. Through detailed simulations, the proposed scheme is shown to be more efficient compared to the existing ones.  相似文献   

17.
To improve traffic safety and efficiency, it is vital to reliably send traffic-related messages to vehicles in the targeted region in vehicular ad hoc networks (VANETs). In this paper, we propose a novel scheme, relative position based message dissemination (RPB-MD), to reliably and efficiently disseminate messages to the vehicles in the zone-of-relevance. Firstly, the relative position based (RPB) addressing model is proposed to effectively define the intended receivers in the zone-of-relevance. To ensure high message delivery ratio and low delivery delay, directional greedy broadcast routing (DGBR) is introduced to make a group of candidate nodes hold the message for high reliability. Moreover, to guarantee efficiency, the protocol time parameters are designed adaptively according to the message attributes and local vehicular traffic density. The protocol feasibility is analyzed to illustrate the robustness and reliability of RPB-MD. Simulation results show that RPB-MD, compared with representative existing schemes, achieves high delivery ratio, limited overhead, reasonable delay and high network reachability under different vehicular traffic density and data sending rate.  相似文献   

18.
Safety message dissemination is crucial in vehicular ad hoc networks (VANETs) for road safety applications. Vehicles regularly transmit safety messages to surrounding vehicles to prevent road accidents. However, changing vehicle mobility and density can cause unstable network conditions in VANETs, making it inappropriate to use a fixed contention window (CW) for different network densities. It has been proposed a 1-D Markov model under unsaturation conditions to analyze the performance of the system with varying CWs under changing vehicle densities. Additionally, it introduces the use of cooperative communication (CoC) to relay failed safety messages. In CoC, two control packets, namely, negative acknowledge (NACK) and enable to cooperate (ETC), are utilized. The proposed analytical model named cooperative communication for safety message dissemination (CoC-SMD) is used to calculate throughput and average packet delay for varying CW and different packet size. The simulation confirms the validity of the analytical results and show significant improvement in the metrics through the use of varying CW sizes and CoC compared with existing techniques.  相似文献   

19.
This paper focuses on vehicle to roadside (V2R) communications in vehicular networks based on the IEEE 802.11 DCF MAC protocol. In vehicular networks, roadside units (RSUs) are typically spaced apart along the road and each vehicle can be connected to an RSU only when the vehicle is within its transmission range. Due to the high relative speed between a moving vehicle and a stationary RSU, the residence time of the vehicle within the coverage of each RSU is very short. Thus it is hard for the system to reach a steady state. With multi-hop forwarding, in which a vehicle may be connected to an RSU through relaying over other vehicles, the connection time of each V2R access may be extended. But this is at the expense of introducing wireless interference among vehicles, which may dramatically degrade the system performance. To tackle these challenges, we propose a new mechanism called Proxy-based Vehicle to RSU access (PVR) for V2R communications. This protocol is designed to exploit cooperative and opportunistic forwarding between any two distant RSUs and to emulate back-to-back transmissions within the coverage of an RSU. As a result, it can shorten the access delay by taking advantage of opportunistic forwarding and mitigate the interference problem during the short residence time within the coverage of an RSU. The simulation results show that PVR achieves excellent performance and outperforms all existing solutions for V2R communications in vehicular networks.  相似文献   

20.
针对车辆无线自组织网络在车流量密度大的情况下,周期性安全消息产生的Beacons可能占据整个信道带宽,从而导致信道拥塞的问题,提出了一种基于调整Beacon频率和车辆通信半径的拥塞控制机制。该机制首先为周期性安全消息和突发事件安全消息提出了一个信道分配算法,将周期性安全消息在信道中占用的带宽资源限定在一定的门限以下,保证有足够的信道资源传输突发事件安全消息。然后,在保证车辆用户安全的条件下,根据精确性要求和成功接收率,动态地调整Beacon频率和车辆通信半径,来控制信道中能够容纳的用户数,避免信道拥塞。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号