首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Conventional mobile hydraulic power supplies involve numerous kinematic connections and are limited by the efficiency, noise, and emissions of internal combustion engines. The Stirling cycle possesses numerous benefits such as the ability to operate from any heat source, quiet operation, and high theoretical efficiency. The Stirling engine has seen limited success due to poor heat transfer in the working chambers, difficulty sealing low-molecular weight gases at high pressure, and non-ideal piston displacement profiles. As a solution to these limitations, a liquid piston Stirling engine pump is proposed. The liquid pistons conform to irregular volumes, allowing increased heat transfer through geometry features on the interior of the working chambers. Creating near-isothermal operation eliminates the costly external heat exchangers and increases the engine efficiency through decreasing the engine dead space. The liquid pistons provide a positive gas seal and thermal transport to the working chambers. Controlling the flow of the liquid pistons with valves enables matching the ideal Stirling cycle and creates a direct hydraulic power supply. Using liquid hydrogen as a fuel source allows cooling the compression side of the engine before expanded the fuel into a gas and combusting it to heat the expansion side of the engine. Cooling the compression side not only increases the engine power, but also significantly increases the potential thermal efficiency of the engine. A high efficiency Stirling engine makes energy regeneration through reversing the Stirling cycle practical. When used for regeneration, the captured energy can be stored in thermal batteries, such as a molten salt. The liquid piston Stirling engine pump requires further research in numerous areas such as understanding the behavior of the liquid pistons, modeling and optimization of a full engine pump, and careful selection of materials for the extreme operating temperatures. Addressing these obtainable research quandaries will enable a transformative Stirling engine pump with the potential to excel in numerous applications.  相似文献   

2.
This paper presents a global thermal model of the energy conversion of the 10 kWel Eurodish dish/Stirling unit erected at the CNRS-PROMES laboratory in Odeillo. Using optical measurements made by DLR, the losses by parabola reflectivity and spillage are calculated. A nodal method is used to calculate the heat losses in the cavity by conduction, convection, reflection and thermal radiation. A thermodynamic analysis of a SOLO Stirling 161 engine is made. The Stirling engine is divided in 32 control-volumes and equations of ideal gas, mass and energy conservation are written for each control-volume. The differential equation system is resolved by an iterative method developed using Matlab programming environment. Temperature, mass, density of working gas, heat transfers and the mechanical power are calculated for one Stirling engine cycle of 40 ms and for a constant direct normal irradiation (DNI). The model gives consistent results correctly fitting with experimental measurements.  相似文献   

3.
本文讨论在给定热源温度和压缩比的情况下,过程进行的速率有限,并受热传导不可逆影响的内可逆活塞式斯特林发动机的最优性能,导出以理想气体或范德瓦尔斯气体为工质的斯特林发动机的最大输出功率与热效率的关系,以及最大热效率与输出功率的关系,并推出了一些新的有限时间热力学的性能界限。  相似文献   

4.
对斯特林发动机的压缩与膨胀过程进行了变质量系统热力学分析。利用等温模型分析法,引入流动阻力损失的计算模型,模拟了分置式斯特林发动机内部工质的压力等参数的动态变化规律。仿真结果表明:斯特林发动机在运行过程中压缩腔与膨胀腔的气体压力并不时时相等;提高发动机的转速和高温热源温度,可以增加发动机的输出功率。  相似文献   

5.
With the daily rise in environmental issues due to the use of conventional fuels, researchers are motivated to use renewable energy sources. One of such waste heat and low-temperature differential driven energy sources is the Stirling engine. The performance of the Stirling engine can be improved by finding out the optimum operating and geometrical parameters with suitable working gas and thermal model. Based on this motivation, the current work focuses on the multiobjective optimization of the Stirling engine using the finite speed thermodynamic model and methane gas as the working fluid. Considering output power and pressure drop as two objective functions, the system is optimized using 11 geometrical and thermal design parameters. The optimization results are obtained in the form of the Pareto frontier. A sensitivity assessment is carried out to observe the decision variables, which are having a more sensitive effect on the optimization objectives. Optimization results reveal that 99.83% change in power output and 78% change in total pressure drop can take place in the two-dimensional optimization space. The optimal solution closest to the ideal solution has output power and pressure drop values as 12.31 kW and 22.76 kPa, respectively.  相似文献   

6.
The combustion chamber is an important component for the Stifling engine heated by natural gas. In the paper, we develop a combustion chamber for the Stifling engine which aims to generate 3-5 kWe electric power. The combustion chamber includes three main components: combustion module, heat exchange cavity and thermal head. Its feature is that the structure can divide "combustion" process and "heat transfer" process into two appar- ent individual steps and make them happen one by one. Since natural gas can mix with air fully before burning, the combustion process can be easily completed without the second wind. The flame can avoid contacting the thermal head of Stifling engine, and the temperature fields can be easily controlled. The designed combustion chamber is manufactured and its performance is tested by an experiment which includes two steps. The experi- mental result of the first step proves that the mixture of air and natural gas can be easily ignited and the flame burns stably. In the second step of experiment, the combustion heat flux can reach 20 kW, and the energy utiliza- tion efficiency of thermal head has exceeded 0.5. These test results show that the thermal performance of com- bustion chamber has reached the design goal, The designed combustion chamber can be applied to a real Stifling engine heated by natural gas which is to generate 3-5 kWe electric power.  相似文献   

7.
《Applied Thermal Engineering》2001,21(16):1621-1630
Stirling engine, using a composite working fluid, such as two-component fluid: gaseous carrier and phase-change component and single multi-phase fluid as the working fluid is studied to get high thermal efficiency. In Stirling engine with a composite fluid, a thermodynamic supercritical heat recovery and heating process is proposed and demonstrated to improve the heat transfer of the heat regenerator and cooler of common gaseous Stirling engine. The criteria for the choice of the working fluids are also formulated.  相似文献   

8.
苏孙庆 《节能技术》2007,25(1):53-55
基于理想玻色气体的状态方程,分析以理想玻色气体为工质的量子斯特林热机具有非理想回热特性,导出循环的效率和输出功的表达式,并对结果进行一些有意义的讨论,所得结果将对斯特林热机的研究提供些理论依据.  相似文献   

9.
The search for an engine cycle with high efficiency, multi-sources of energy and less pollution has led to reconsideration of the Stirling cycle. Several engine prototypes were designed but their performances remain relatively weak when compared with other types of combustion engines. In order to increase their performances and analyze their operations, a numerical simulation model taking into account thermal losses has been developed and used, in this paper, to optimize the engine performance. This model has been tested using the experimental data obtained from the General Motor GPU-3 Stirling engine prototype. A good correlation between experimental data and model prediction has been found. The model has also been used to investigate the influence of geometrical and physical parameters on the Stirling engine performance and to determine the optimal parameters for an acceptable operational gas pressure.  相似文献   

10.
In the recent years, numerous studies have been done on Stirling cycle and Stirling engine which have been resulted in different output power and engine thermal efficiency analyses. Finite speed thermodynamic analysis is one of the most prominent ways which considers external irreversibilities. In the present study, output power and engine thermal efficiency are optimized and total pressure losses are minimized using NSGA algorithm and finite speed thermodynamic analysis. The results are successfully verified against experimental data.  相似文献   

11.
《能源学会志》2014,87(1):69-80
By using quantum master equation, semi-group approach and finite time thermodynamics (FTT), this paper derives the expressions of cycle period, power and efficiency of an irreversible quantum Carnot heat engine with irreversibilities of heat resistance, internal friction and bypass heat leakage, and provides detailed numerical examples. The irreversible quantum Carnot heat engine uses working medium consisting of many non-interacting spin-1/2 systems and its cycle is composed of two isothermal processes and two irreversible adiabatic processes. The optimal performance of the quantum heat engine at high temperature limit is deduced and analyzed by numerical examples. Effects of internal friction and bypass heat leakage on the optimal performance are discussed. The endoreversible case, frictionless case and the case without bypass heat leakage are also briefly discussed.  相似文献   

12.
This work aims to compare beta-type Stirling engine performance (GPU-3 [ground power unit]) driven by rhombic and crank mechanisms. A modified non-ideal adiabatic model accounting for different frictional and thermal losses was adopted in this study. After validating the current model with engine experimental data, different scenarios of operating conditions including heater temperature, cooler temperature, charge pressure and engine speed were investigated. The results revealed that rhombic drive mechanism generates 32% more power and provides 20% more efficiency than crank mechanism at normal operating conditions. However, at low hot end temperature (300°C) and high charge pressure (50 bar) crank drive mechanism tends to slightly generate power more than rhombic drive mechanism at lower engine speeds. At low hot end temperature (300°C) and charge pressure (10 bar) both mechanisms cannot deliver any positive power. Higher power loss is recognized in crank drive mechanism at higher speeds due to increased pumping and gas spring hysteresis losses. This study highlights a wide analysis opportunity for designers and researchers of GPU-3 Stirling engine for further optimization.  相似文献   

13.
An analytic model is proposed of a solar power plant (SPP) with a Stirling engine that is based on the isothermal model of the Stirling engine (SE) working process and is improved by account for the actual heat exchange, the hydraulic and mechanical losses in the SE, the losses in the electric generator, and also the basic parameters of the solar radiation concentrator.  相似文献   

14.
对Dieterici实际气体作了简要分析,并以Dieterici实际气体为工质,分别导出卡诺热机和斯特林热机的输出功和效率的一般表达式.最后通过数值计算,讨论了卡诺热机及斯特林热机的输出功和效率分别与体积和温度之间的关系.所得结论可为热机的运行条件和优化设计提供理论参考.  相似文献   

15.
斯特林热机的性能优化分析   总被引:13,自引:0,他引:13       下载免费PDF全文
考虑了斯特林热机工作过程中热阻的不可逆性、等容回热过程的有限时间性以及回热损失,应用有限时间热力学理论,对牛顿传热机的性能进行了优化分析,得到了对优化设计,最佳工作参数选择有意义的结论。  相似文献   

16.
Hot air engines (Stirling and Ericsson engines) are well suited for micro-cogeneration applications because they are noiseless, and they require very low maintenance. Ericsson engines (i.e. Joule cycle reciprocating engines with external heat supply) are especially interesting because their design is less constrained than Stirling engines, leading to potentially cheaper and energetically better systems. We study the coupling of such an Ericsson engine with a system of natural gas combustion. In order to design this plant, we carry out classic energy, exergy and exergo-economic analyses. This study does not deal with a purely theoretical thermodynamic cycle. Instead, it is led with a special attempt to describe as accurately as possible what could be the design and the performance of a real engine. It allows us to balance energetic performance and heat exchanger sizes, to plot the exergy Grassmann diagram, and to evaluate the cost of the thermal and electric energy production. These simple analyses confirm the interest of such systems for micro-cogeneration purposes. The main result of this study is thus to draw the attention on Ericsson engines, unfortunately unfairly fallen into oblivion.  相似文献   

17.
《Applied Thermal Engineering》2007,27(5-6):829-839
A model for the study and optimization of two heat reservoirs thermal machines is presented. The mathematical model basically consists of the First and Second Laws of Thermodynamics applied to the cycle and entire system, and the heat transfer equations at the source and sink. The internal and external irreversibilities of the cycle are considered by taking into account the entropy generation terms. Several constraints imposed to the system composed by the engine and the two heat reservoirs (namely, engine efficiency, or power output, or heat flux received by the engine, each of them together with imposed internal entropy generation and total number of heat transfer units of the machine heat exchangers) allow us to find the optimum operational conditions, as well as the limited variation ranges for the system parameters. Emphasis is put on coupling between various possible objective functions, namely thermal cost, useful effect, first law efficiency and whole system dissipation. It is for the first time to our knowledge when it has been proved that if one of the possible objective functions is fixed (as a parameter with imposed value), the optima of the other three always correspond to each other for the corresponding stationary state system, with a given optimum heat conductance allocation (one degree of freedom). Other interesting results are also reported in this paper. Some sensitivity studies were developed, too, with respect to various parameters of the model (engine performance, internal entropy generation, total number of heat transfer units).  相似文献   

18.
《Applied Energy》2001,68(3):249-264
A regenerative gas turbine engine, with isothermal heat addition, working under the frame of a Brayton cycle has been analyzed. With the purpose of having a more efficient small-sized gas turbine engine, the optimization has been carried out numerically using the maximum power (MP) and maximum power density (MPD) method. The effects of internal irreversibilities have been considered in terms of the isentropic efficiencies of the turbine and compressor and of the regenerator efficiency. The results summarized by figures show that the regenerative gas turbine engine, with isothermal heat addition, designed according to the maximum power density condition gives the best performance and exhibits highest cycle efficiencies.  相似文献   

19.
A solar-driven Stirling engine is modelled as a combined system which consists of a solar collector and a Stirling engine. The performance of the system is investigated, based on the linearized heat loss model of the solar collector and the irreverisible cycle model of the Stirling engine affected by finite-rate heat transfer and regenerative losses. The maximum efficiency of the system and the optimal operating temperature of the solar collector are determined. Moreover, it is pointed out that the investigation method in the present paper is valid for other heat loss models of the solar collector as well, and the results obtained are also valid for a solar-driven Ericsson engine system using an ideal gas as its engine work substance. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
The simultaneous productions of mechanical work and low-grade heat by a Stirling engine cogeneration powered by crude glycerol are studied analytically. The study focuses on searching the appropriate values of engine physical parameters to minimize the specific fuel consumption to optimize the work production regardless of the low-grade heat production. The modeling considers the equation of combustion, finite heat transfer between the sources and the working gas, non-perfect regenerator, non-isothermal transformations and non-sinusoidal volume variations during the crankshaft rotation. The optimum operating temperature of the engine hot source and the optimum piston-displacer angular phase shift are determined for alpha, beta and gamma Stirling engines according to the engines swept volume ratio. Results show that the optimum configuration changes considerably with the value of the coefficient of heat transfer. The minimum specific glycerol consumption is 1024 ggly./kWh and is obtained with alpha type engine. Best performance for beta type is quasi-similar but in this last case, the indicated work production is higher than for alpha engine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号