首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
With the help of the current models of proton exchange membrane (PEM) fuel cells and three-heat-source refrigeration cycles, the general model of a PEM fuel cell/refrigeration cycle hybrid system is originally established, so that the waste heat produced in the PEM fuel cell may be availably utilized. Based on the theory of electrochemistry and non-equilibrium thermodynamics, expressions for the efficiency and power output of the PEM fuel cell, the coefficient of performance and cooling rate of the refrigeration cycle, and the equivalent efficiency and power output of the hybrid system are derived. The curves of the equivalent efficiency and power output of the hybrid system varying with the electric current density and the equivalent power output versus efficiency curves are represented through numerical calculation. The general performance characteristics of the hybrid system are discussed. The optimal operation regions of some parameters in the hybrid system are determined. The advantages of the hybrid system are revealed.  相似文献   

2.
    
Increasing source runtime, speeding up the transient response, while minimizing weight, volume and cost of the power supply system are key requirements for portable, mobile and off-grid applications of fuel cells. In this respect, Internal Reforming Methanol Fuel Cell (IRMFC) modules were designed, constructed and tested based on an innovative double reformer (DRef) configuration and metallic bipolar plates (BPPs) with unique arrangement. Recently developed cross-linked Advent TPS® high-temperature membrane electrode assemblies (MEAs) were employed for fuel cell operation at 210 °C. Taking into account the requirement for a light-weight and low-volume stack, Cu-based methanol reforming catalyst were supported on carbon papers, resulting in ultra-thin reformers. The proposed configuration offered a significant decrease in the weight and volume of the whole power system, as compared with previous voluminous foam-based modules. Moreover, specifically designed bipolar plates were made of coated Al-metal alloys, which proved to be stable in the strong acidic environment at elevated temperatures. The prototype 32MEAs-32DRef IRMFC stack of 100 W including home-made insulation casing, was integrated for operation at 200–210 °C and at 0.2 A cm−2, demonstrating the functionality of the unit. A power output of 100.7 W (3.14 W per cell; 0.114 W cm−2) was achieved in the last run following several on-off cycles. The volumetric power density of the IRMFC stack including insulation and casing is around 30 W per lt, being among the highest reported either in the case of portable or stationary applications. Overall, the observed stability of reformers and bipolar plates was satisfactory within the timeframe of the work undertaken. Specific targets for improvement of the efficiency were identified, and the main drawback had to do with low thermal and mechanical stability of the membranes under start-up/shut-down transient operation.  相似文献   

3.
Fuel cell systems based on liquid fuels are particularly suitable for auxiliary power generation due to the high energy density of the fuel and its easy storage. Together with industrial partners, Oel-Waerme-Institut is developing a 3 kWel PEM fuel cell system based on diesel steam reforming to be applied as an APU for caravans and yachts. The start-up time of a fuel cell APU is of crucial importance since a buffer battery has to supply electric power until the system is ready to take over. Therefore, the start-up time directly affects the battery capacity and consequently the system size, weight, and cost.  相似文献   

4.
Xiuqin Zhang  Juncheng Guo  Jincan Chen   《Energy》2010,35(12):5294-5299
Based on the irreversible model of a PEM fuel cell working at steady state, expressions for the power output, efficiency and entropy production rate of the PEM fuel cell are analytically derived by using the theory of electrochemistry and non-equilibrium thermodynamics. The effects of multi-irreversibilities resulting from electrochemical reaction, heat transfer and electrical resistance on the key parameters of the PEM fuel cell are analyzed. The curves of the power output, efficiency and entropy production rate of the PEM fuel cell varying with the electric current density are represented through numerical calculation. The general performance characteristics of the PEM fuel cell are revealed and the optimum criteria of the main performance parameters are determined. Moreover, the optimal matching condition of the load resistance is obtained from the relations between the load resistance and the power output and efficiency. The effects of the leakage resistance on the performance of the PEM fuel cell are expounded and the optimally operating states of the PEM fuel cell are further discussed.  相似文献   

5.
The aim of this work is to analyze energetically the use of glycerin as the primary hydrogen source to operate a proton exchange membrane fuel cell. A glycerin processor system based on its steam reforming is described departing from a previous process model developed for ethanol processing. Since about 10% w/w of glycerin is produced as a byproduct when vegetable oils are converted into biodiesel, and due to the later is increasing its production abruptly, a large glycerin excess is expected to oversaturate the market. The reformed stream contains mainly H2 but also CO, CO2, H2O and CH4. As CO is a poison for PEM fuel cell type, a stream purification step is previously required. The purification subsystem consists of two water gas shift reactors and a CO preferential oxidation reactor to reduce the CO levels below 10 ppm. The reforming process is governed by endothermic reactions, requiring thus energy to proceed. Depending on the system operation point, the energy requirements can be fulfilled by burning an extra glycerin amount (to be determined), which is the minimal that meets the energy requirements. In addition a self-sufficient operation region can be distinguished. In this context, the water/glycerin molar ratio, the glycerin steam reformer temperature, the system pressure, and the extra glycerin amount to be burned (if necessary) are the main decision variables subject to analysis. Process variables are calculated simultaneously, updating the composite curves at each iteration to obtain the best possible energy integration of the process. The highest net system efficiency value computed is 38.56% based on the lower heating value, and 34.71% based on the higher heating value. These efficiency values correspond to a pressure of 2 atm, a water/glycerin molar ratio of 5, a glycerin steam reformer temperature of 953 K, and an extra glycerin amount burned of 0.27 mol h−1. Based on the main process variables, suitable system operation zones are identified. As in practice, most PEM fuel cells operate at 3 atm, optimal variable values obtained at this condition are also reported. Finally, some results and aspects on the system performance of both glycerin and ethanol processors operated at 3 atm are compared and discussed.  相似文献   

6.
This work presents a simulative energy efficiency analysis performed on fuel processor – PEMFC systems, considering methane as fuel and steam reforming or autothermal reforming as processes to produce hydrogen. Computation of energy efficiency takes into account the power required by the auxiliary units, coupling of the fuel processor with the fuel cell as well as heat recovery and integration.  相似文献   

7.
A solid oxide fuel cell (SOFC)–polymer electrolyte fuel cell (PEFC) combined system was investigated by numerical simulation. Here, the effect of the current densities in the SOFC and the PEFC stacks on the system's performance is evaluated under a constant fuel utilization condition. It is shown that the SOFC–PEFC system has an optimal combination of current densities, for which the electrical efficiency is highest. The optimal combination exists because the cell voltage in one stack increases and that of the other stack decreases when the current densities are changed. It is clarified that there is an optimal size of the PEFC stack in the parallel-fuel-feeding-type SOFC–PEFC system from the viewpoint of efficiency, although a larger PEFC stack always leads to higher electrical efficiency in the series-fuel-feeding-type SOFC–PEFC system. The 40 kW-class PEFC stack is suitable for the 110 kW-class SOFC stack in the parallel-fuel-feeding type SOFC–PEFC system.  相似文献   

8.
Based on the current models of the solid oxide fuel cell and gas turbine, a generic model of a solid oxide fuel cell-gas turbine hybrid system is established, in which the multiple irreversibilities existing in real hybrid systems are taken into account. Expressions for the efficiencies and power outputs of both the subsystems and the hybrid system are analytically derived. The general performance characteristics of the hybrid system are revealed and the optimum criteria of the main performance parameters are determined. The effects of some key irreversibilities existing in the fuel cell and gas turbine on the performance of the hybrid systems are discussed in detail. The results obtained may be directly used to discuss some special cases of the hybrid system.  相似文献   

9.
Based on the current models of solid oxide fuel cells and two-heat-source heat engines consisting of two isothermal and two polytropic processes, a general model of a class of fuel cell/heat engine hybrid systems is established, in which multi-irreversibilities existing in real hybrid systems are taken into account. Expressions for the efficiency and power output of the hybrid systems are analytically derived from the model. The curves of the efficiency and power output of the hybrid systems varying with the current density and the efficiency versus power output curves are represented through numerical calculation. The general performance characteristics of the hybrid systems are revealed and the optimum criteria of the main performance parameters are determined. The effects of some key irreversibilities existing in the fuel cell, regenerator and two-heat-source heat engine on the performance of the hybrid systems are discussed in detail. The results obtained here are very general and may be directly used to derive the various interesting conclusions of the hybrid systems which are operated under different special cases.  相似文献   

10.
Recent advances in anode electrocatalysts for low-temperature PEM fuel cells are increasing tolerance for CO in the H2-rich anode stream. This study explores the impact of potential improvements in CO-tolerant electrocatalysts on the system efficiency of low-temperature Nafion-based PEM fuel cell systems operating in conjunction with a hydrocarbon autothermal reformer and a preferential CO oxidation (PROx) reactor for CO clean-up. The incomplete H2 clean-up by PROx reactors with partial CO removal can present conditions where CO-tolerant anode electrocatalysts significantly improve overall system efficiency. Empirical fuel cell performance models were based upon voltage-current characteristics from single-cell MEA tests at varying CO concentrations with new Pt-Mo alloy reformate-tolerant electrocatalysts tested in conjunction with this study. A system-level model for a liquid-fueled PEM fuel cell system with a 5 kW full power output is used to study the trade-offs between the improved performance with decreased CO concentration and the increased penalties from the air supply to the PROx reactor and associated reduction in H2 partial pressures to the anode. As CO tolerance is increased over current state-of-the-art Pt alloy catalysts, system efficiencies improve due primarily to higher fuel cell voltages and to a lesser extent to reductions in parasitic loads. Furthermore, increasing CO tolerance of anode electrocatalysts allows for the potential for reduced system costs with minimal efficiency penalty by reducing PROx reactor size through reduced CO conversion requirements.  相似文献   

11.
This paper presents experimental results of a diesel steam reforming fuel processor operated in conjunction with a gas cleanup module and coupled operation with a PEM fuel cell. The fuel processor was operated with two different precious-metal based reformer catalysts, using diesel surrogate with a sulfur content of less than 2 ppmw as fuel. The first reformer catalyst entails an increasing residual hydrocarbon concentration for increasing reformer fuel feed. The second reformer catalyst exhibits a significantly lower residual hydrocarbon concentration in the reformate gas.  相似文献   

12.
The woody biomass Stirling engine (WB-SEG) is an external combustion engine that outputs high-temperature exhaust gases. It is necessary to improve the exergy efficiency of WB-SEG from the viewpoint of energy cascade utilization. So, a combined system that uses the exhaust heat of WB-SEG for the steam reforming of city gas and that supplies the produced reformed gas to a proton exchange membrane fuel cell (PEM-FC) is proposed. The energy flow and the exergy flow were analyzed for each WB-SEG, PEM-FC, and WB-SEG/PEM-FC combined system. Exhaust heat recovery to preheat fuel and combustion air was investigated in each system. As a result, (a) improvement of the heat exchange performance of the woody biomass combustion gas and engine is observed, (b) reduction in difference in the reaction temperature of each unit, and (c) removal of rapid temperature change of reformed gas are required in order to reduce exergy loss of the system. The exergy efficiency of the WB-SEG/PEM-FC combined system is superior to EM-FC.  相似文献   

13.
An active and tolerant Ni-based catalyst for methane steam reforming in direct internal reforming molten carbonate fuel cells (DIR-MCFCs) was developed. Deactivation of reforming catalysts by alkali metals from the electrolyte composed of Li2CO3 and K2CO3 is one of the major obstacles to be overcome in commercialization of DIR-MCFCs. Newly developed Ni/MgSiO3 and Ni/Mg2SiO4 reforming catalysts show activities of ca. 80% methane conversion. Subsequent to electrolyte addition to the catalyst, however, the activity of Ni/Mg2SiO4 decreases to ca. 50% of its initial value, whereas Ni/MgSiO3 catalyst retains its initial activity. Results obtained from temperature-programmed reduction and X-ray photoelectron spectroscopy identify unreduced Ni3+ as a decisive factor in keeping catalytic activity from the electrolyte.  相似文献   

14.
Glycerol as a byproduct of biodiesel production represents a renewable energy source. In particular, glycerol can be used in the field of hydrogen production via gas phase reforming for proton exchange membrane fuel cell (PEMFC) applications. In this work, glycerol steam reforming (GSR) reaction was investigated using a dense palladium-silver membrane reactor (MR) in order to produce pure (or at least CO-free) hydrogen, using 0.5 wt% Ru/Al2O3 as reforming catalyst. The experiments are performed at 400 °C, water to glycerol molar feed ratio 6:1, reaction pressure ranging from 1 to 5 bar and weight hourly space velocity (WHSV) from 0.1 to 1.0 h−1. Moreover, a comparative study is given between the Pd-Ag MR and a traditional reactor (TR) working at the same MR operating conditions. The effect of the WHSV and reaction pressure on the performances of both the reactors in terms of glycerol conversion and hydrogen yield is also analyzed. The MR exhibits higher conversion than the TR (∼60% as best value for the MR against ∼40% for the TR, at WHSV = 0.1 h−1 and 5 bar), and high CO-free hydrogen recovery (around 60% at WHSV = 0.1 h−1 and 5 bar). During reaction, carbon coke is formed limiting the performances of the reactors and inhibiting, in particular, the hydrogen permeation through the membrane with a consequent reduction of hydrogen recovery in the permeate side.  相似文献   

15.
    
The commercial vehicles are in leadership in emission production for on-road vehicles. This high rate of emission is released in highly populated areas where diesel driven internal combustion engines are running in inefficient operating ranges. Except the propulsion, the internal combustion engine is powering the auxiliary devices such as refrigerator unit, etc. The auxiliary units are significant contributor to the overall pollutant production. In this paper the auxiliary load power supply for refrigerator unit is shifted from internal combustion engine to PEM fuel cell. The decrease in CO2 accumulated emissions was estimated by simulation model containing vehicle model (tire, brake, differential, gearbox and driver model), diesel engine model and auxiliary power demand model. Four stroke diesel engine was modeled and investigated. For this investigation the fully filled truck was used for simulating 100% weight load. The gross weight is 7500 kg.The novelty of the approach is the simulation performed on realistic combination of city and urban road cycle. The focus was on modelling the realistic truck driving cycle in order to correctly predict emission and fuel consumption reduction. Since initial investigation are performed on constant load demand of fuel cell, simplified model of PEMFC was applied. PEM fuel cell stack was designed in order to meet the demands of auxiliary consumers. The H2 consumption and size of hydrogen tank was estimated based on assumed 8-h daily drive. Finally, the migration of power supply for auxiliary units on commercial vehicle from internal combustion engine showed potential of fuel savings and CO2 reduction of up to 9% for a given case on this specific test cycle.  相似文献   

16.
Architectonics of the paper-structured catalyst for the application to the biofuel reformer or direct internal reforming SOFC (DIRSOFC) was studied. Inorganic fiber network, “paper”, composed of yttria-stabilized zirconia (YSZ) fiber (Zf), alumina fiber (Af) and inorganic binder (Al2O3 sol (As) or ZrO2 sol (Zs) or CeO2 sol (Cs)) was prepared by a simple paper-making process. Then, the catalytic activities of the Ni and Ni–MgO loaded papers called “paper-structured catalysts (PSCs)” for the steam reforming of biodiesel fuels (BDFs) were evaluated. Ni–MgO loaded PSC using Cs as an inorganic binder, Ni–MgO/ZfAfCs, exhibited excellent performance over Ru/γAl2O3 catalyst beads. Formation of light hydrocarbons, especially C2H4, was eliminated and water–gas shift reaction was more promoted compared to the catalyst beads.  相似文献   

17.
The study compares the performance of different pathways for gas-phase (non-catalytic) fuel reforming between 600 and 1000 °C. Specifically, the conversion of propane to hydrogen-rich syngas was investigated numerically and experimentally for pyrolysis (Py), steam reforming (SR), partial oxidation (POx), and autothermal reforming (ATR). Experiments were conducted in a tubular quartz reactor, where temperatures were imposed externally; reactants were diluted with nitrogen to reduce the impact of endothermic/exothermic reactions on the variation of gas-phase temperatures. In experiments, product concentrations of hydrogen, carbon monoxide, carbon dioxide, methane, and a range of hydrocarbon species were measured at predetermined operating conditions. The performance of each homogeneous reforming process was evaluated and compared by assessing propane conversion and production efficiencies for hydrogen and other species of interest. At 600 °C, propane conversion was low, but increased substantially with temperature; complete conversion was achieved at 1000 °C. Furthermore, findings show improved hydrogen production efficiencies of POx/ATR when compared to Py/SR. Experimental results are substantiated by numerical simulations with detailed chemical kinetics; numerical results are in good agreement with experiments at identical operating conditions. Experimental and numerical results for non-catalytic propane reforming at all tested temperatures (600–1000 °C) imply a negligible impact of steam addition to the process, as results for SR resemble Py results, and ATR closely follows POx characteristics. As such, results clearly show that steam does not play an active role in gas-phase reforming of propane at intermediate temperatures.  相似文献   

18.
A generic model of the hybrid system consisting of an alkaline fuel cell (AFC) and a heat-driven cycle, which may work as either a refrigerator or a heat pump, is originally established. On the basis of the models of AFCs and three-heat-reservoir cycles, the equivalent power output and efficiency of the hybrid system are obtained. The performance characteristic curves of the hybrid system are represented through numerical calculation. The maximum equivalent power output and efficiency of the hybrid system are determined. Problems concerning the optimal operation of the hybrid system are discussed. The effects of the main irreversible losses on the performance of the hybrid system are investigated in detail. It is important to note that the waste heat produced in the AFC can be readily used in such a hybrid cycle.  相似文献   

19.
The use of hydrocarbon fed fuel cell systems including a fuel processor can be an entry market for this emerging technology avoiding the problem of hydrogen infrastructure. This article presents a 1 kW low temperature PEM fuel cell system with fuel processor, the system is fueled by a mixture of methanol and water that is converted into hydrogen rich gas using a steam reformer. A complete system model including a fluidic fuel processor model containing evaporation, steam reformer, hydrogen filter, combustion, as well as a multi-domain fuel cell model is introduced. Experiments are performed with an IDATECH FCS1200™ fuel cell system. The results of modeling and experimentation show good results, namely with regard to fuel cell current and voltage as well as hydrogen production and pressure. The system is auto sufficient and shows an efficiency of 25.12%. The presented work is a step towards a complete system model, needed to develop a well adapted system control assuring optimized system efficiency.  相似文献   

20.
Clean and renewable energy generation and supply has drawn much attention worldwide in recent years, the proton exchange membrane (PEM) fuel cells and solar cells are among the most popular technologies. Accurately modeling the PEM fuel cells as well as solar cells is critical in their applications, and this involves the identification and optimization of model parameters. This is however challenging due to the highly nonlinear and complex nature of the models. In particular for PEM fuel cells, the model has to be optimized under different operation conditions, thus making the solution space extremely complex. In this paper, an improved and simplified teaching-learning based optimization algorithm (STLBO) is proposed to identify and optimize parameters for these two types of cell models. This is achieved by introducing an elite strategy to improve the quality of population and a local search is employed to further enhance the performance of the global best solution. To improve the diversity of the local search a chaotic map is also introduced. Compared with the basic TLBO, the structure of the proposed algorithm is much simplified and the searching ability is significantly enhanced. The performance of the proposed STLBO is firstly tested and verified on two low dimension decomposable problems and twelve large scale benchmark functions, then on the parameter identification of PEM fuel cell as well as solar cell models. Intensive experimental simulations show that the proposed STLBO exhibits excellent performance in terms of the accuracy and speed, in comparison with those reported in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号