首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用非等温热重法对玉米芯热解半焦CO2气化行为和动力学特性进行研究。结果表明:升温速率对整个气化过程有重要影响。随着升温速率的增大,完成反应所需的温度提高,反应速率增加,反应时间缩短,而且升温速率越大,反应速率的峰值越高且向高温区偏移。利用Kissinger微分法和Coats-Redferm积分法分别计算动力学参数,所得不同升温速率下的平均活化能为180.77kJ/mol;升温速率越大,活化能越小。研究发现,玉米芯热解半焦CO2非等温气化的活化能E和频率因子A之间存在动力学补偿效应,两者满足lnA=0.09384E+2.604。  相似文献   

2.
采用热重实验系统进行了煤粉在O_2/N_2和O_2/CO_2气氛下的燃烧实验,研究了氧体积分数和粒径对燃烧特性的影响.实验结果表明,氧体积分数越高、粒径越小,煤粉的燃烧特性越好.在氧体积分数较高时,煤粉在O_2/CO_2气氛下的反应比在O_2/N_2气氛下进行得慢;而氧体积分数较低时,煤粉在O_2/CO_2气氛下的反应比在O_2/N_2气氛下进行得快.此外,采用Coats-Redfern积分法、Flynn-Wall-Ozawa积分法和Kissinger-Akahira-Sunose积分法对煤粉在程序升温过程中的燃烧反应做了相应的动力学分析.结果表明,O_2/N_2和O_2/CO_2气氛下不同氧体积分数时的煤粉燃烧反应动力学参数表观活化能E和指前因子A之间具有动力学补偿效应.煤粉燃烧过程中在同一转化率下的表观活化能E随其粒径的减小而降低.  相似文献   

3.
张力  彭锦  杨仲卿 《热能动力工程》2012,27(3):336-341,394
利用综合热分析仪以非等温热重法研究了升温速率及粒径对于两种劣质煤粉在CO2气氛下气化反应特性的影响规律,考察了灰分对于两种劣质煤气化反应性的影响,并采用均相反应模型(HM),利用Freeman-Carroll法计算拟合得到各条件下气化反应动力学参数。结果表明:两种劣质煤CO2气化反应级数都是1.0级。反应条件对两种煤样的反应活化能产生了相似的影响:CO2气氛下,在900~1 300℃的样品气化反应区间,当其它条件不变时,随着煤样粒径由150~400μm减小到0~75μm,两种劣质煤样表观活化能呈明显下降趋势;而随着升温速率由30℃/min降至10℃/min,两种煤样反应活化能则在上升。在不同样品粒径及升温速率下,两种煤粉的气化活化能和对应的指前因子之间存在着动力学补偿效应。  相似文献   

4.
以玉米秸秆和煤粉为原料,在不同原料配比,不同升温速率下,利用热重分析仪在模拟锅炉气氛下进行燃烧实验,采用Flynn-Wall-Ozawa法建立动力学模型,研究模拟锅炉气氛下玉米秸秆及其混煤燃烧的燃烧特性及其动力学,对比相同实验条件空气气氛下的燃烧工况结果表明,燃料的综合燃烧特性指数SN随升温速率的增大而成倍增长,因掺入煤粉的比例加倍而减半;随着掺混煤比例的增大,失重速率(DTG)曲线上固定碳燃烧阶段逐渐分化为2个失重峰,模拟锅炉气氛下分化现象更为明显;煤粉的掺入会使燃烧过程所需表观活化能波动增大。  相似文献   

5.
对松木锯屑在N2和CO2气氛下的热解反应进行了分析,分别运用Ozawa法和Coats-Redfern法求得松木锯屑在N2气氛下的反应活化能与适合的机理函数。试验结果表明:在CO2和N2气氛下,松木锯屑热解过程分为干燥、热解预热、热解和高温煅烧4个阶段。随着升温速率的提高,热解曲线向高温一侧移动;较之在N2气氛下的热解过程,松木锯屑在CO2气氛下热解完成后的残余质量更少,由此可推断:CO2气氛有利于热解产生更多的气体产物。  相似文献   

6.
采用热重分析仪与傅里叶红外光谱仪对城市污水污泥进行实验,考察了反应过程及逸出气体产物,求解了热解表观动力学参数。研究表明,污泥样品在N2、CO2和N2+O2气氛中分别发生的热解、气化和燃烧反应,反应过程的特征参数不同;在N2中主要热解温度范围为200~560℃,反应过程在600℃基本完成;随着升温速率增加,热解最大失重速率提高;污泥样品在N2中的热解过程依次析出H2O、CO2、CH4和CO等气体;污泥样品热解不同反应阶段具有不同反应机理和动力学参数,表观活化能在60~100 kJ/mol范围内。  相似文献   

7.
《动力工程学报》2017,(8):673-678
利用热重分析对典型碳烟在O_2/CO_2气氛下氧化的动力学特性进行研究,对比了其与O_2/N_2气氛下的差异,并重点考虑了O_2体积分数的影响,建立了富氧燃烧条件下碳烟氧化反应的表观活化能E和频率因子A与O_2体积分数的定量关联机制.结果表明:与O_2/N_2气氛相比,O_2/CO_2气氛下碳烟氧化的起始和结束温度均较高,综合反应指数降低;O_2/CO_2气氛下,随着O_2体积分数增大,碳烟氧化的TG-DTG曲线向低温区移动,起始和结束温度均降低,最大失重速率增加,综合反应指数显著提高;碳烟氧化反应的E与A之间总是存在显著的"动力学补偿效应",当O_2体积分数低于20%时,E和ln A均与O_2体积分数呈正相关,而当O_2体积分数高于20%时,E与A随O_2体积分数的变化不显著.  相似文献   

8.
不同气氛下柴油热解及热动力学特性分析   总被引:2,自引:0,他引:2  
利用热重分析技术研究了不同载气流量、载气气氛和升温速率下柴油的热解过程.比较分析了单一反应模型和DAEM模型对柴油热解动力学分析的适应性.结果表明,单一反应模型不能在整个温度区间内对柴油热解特性进行预测;而DAEM模型可以由3条不同升温速率下的失重曲线直接得到不同失重率下柴油热解的活化能分布和频率因子的值,较为准确地求解动力学参数.由DAEM模型所得的不同气氛下活化能分布曲线表明,CO2气氛中柴油稳定性更好;柴油在CO2气氛中比N2气氛中热解速度大.  相似文献   

9.
升温速率对废塑料热解过程的影响   总被引:1,自引:0,他引:1  
选取废旧塑料聚乙烯(polyethylene,PE)、聚丙烯(polypropylene,PP)、聚氯乙烯(polyvi-nyl chloride,PVC)及其混合物,在氮气气氛下进行热解实验,实验温度从室温到700℃,升温速率分别为10℃/m in、20℃/m in和30℃/m in。讨论了不同升温速率对废塑料热解过程的影响,并采用Coast-Redfern法进行了热解动力学分析,得到了三种废塑料及其混合物的热解特性及反应动力学参数。研究结果表明,升温速率对热解速率,热解温度段,活化能,频率因子都有影响。升温速率越快,热解反应越快,所需的活化能也越大,热解过程对能量的消耗越多。因此,在废塑料热解过程中,要综合考虑升温速率,热解原料,热解温度等条件。本文可为废塑料热解工艺的研究提供理论依据和参考数据。  相似文献   

10.
城市污泥耦合锯末共热解特性及动力学分析   总被引:1,自引:0,他引:1  
为实现城市污水污泥与锯末共热解的工业应用,利用热重分析仪对污泥耦合锯末共热解过程进行了实验与理论研究,揭示了锯末添加比例、升温速率对污泥热解特性的影响,并基于Coats-Redfern法,结合20种常见固体热解机理函数确定了污泥耦合锯末共热解过程最优热解动力学模型。结果表明:锯末相比污泥具有更低的表观活化能,最大失重速率是污泥的4倍;锯末的添加使得热重分析(TG)曲线向下偏移,最大失重速率明显增大,挥发份析出特性变强;随着升温速率的增大,固态残渣增加,最大失重速率减小,不利于热解反应的进行;按7∶3比例混合的污泥锯末耦合热解微分热重分析(DTG)曲线峰前(230~350℃)表观活化能为38.81 k J/mol,最优动力学模型为D_5-3D扩散模型;峰后(350~500℃)表观活化能为29.93 k J/mol,最优动力学模型为C~2-化学反应模型。  相似文献   

11.
在N_2的气氛下,以10℃/min、20℃/min、30℃/min、40℃/min和50℃/min的升温速率分别对黑液木质素焦进行热重实验,研究升温速率对其热解反应的影响。结果表明,黑液木质素焦的热解过程主要分为三个阶段:180~380℃、380~570℃以及570~800℃;TG和DTG曲线随着升温速率增大逐渐向高温侧偏移,高升温速率不利于热解反应进行;采用Coats-Redfern法、Ozawa法和Kissinger法求得活化能分别为93~251 kJ/mol、111~122 kJ/mol和110~134 kJ/mol。  相似文献   

12.
通过热重分析手段研究了杜氏盐藻在室温至900℃下的热解行为和特性,采用高纯氮气作保护气,升温速率分别为5℃/min、10℃/min、20℃/min和40℃/min.TG、DTG曲线的分析表明,热解过程随温度升高经历3个不同阶段.此外,随着升温速率增大,热解的初始温度和峰值温度均增大,且总失重增加.采用等转化速率法和主曲线法对盐藻热解过程进行动力学分析.结果表明,表观热解反应遵循单一动力学机理模型,反应动力学过程为简单级数反应机理模型Fn.求得热解反应表观平均活化能Ea为146.3 kJ/mol,指前因子A为4.28×1013s-1,指数n为2.4.  相似文献   

13.
采用TGA Q500热分析仪和傅里叶变换红外光谱仪联用技术,对生物油蒸馏残渣在不同升温速率下的热解动力学特性进行分析研究。结果表明:生物油蒸馏残渣热解可分为小分子物质挥发析出、大分子物质裂解和焦炭产生3个阶段,热解产物主要为水、烷烯烃、CO_2和芳香类物质。在不同升温速率10、20、30℃/min下,热解主要阶段反应级数均为2级,活化能分别为74.19、72.52和69.05 kJ/mol。随着升温速率的增大,热重曲线整体向高温区移动,热解主要阶段活化能逐渐减小。  相似文献   

14.
O2/CO2气氛下煤粉燃烧反应动力学的试验研究   总被引:8,自引:2,他引:8  
在热重分析仪上进行了模拟空气气氛及不同O2浓度(21%、30%、40%、80%)的O2/CO2气氛下3种不同品质煤粉(龙岩无烟煤、贵州烟煤、元宝山褐煤)的燃烧特性试验,确定了3种煤粉的燃烧特征参数并进行了动力学分析.结果表明,O2/CO2气氛下煤粉的燃烧分布曲线与O2/N2气氛下有明显不同,在相同O2浓度的条件下,O2/CO2气氛下煤粉燃烧速率低,燃尽时间长;随着O2浓度的增加,燃烧DTG曲线向低温区偏移,着火温度及燃尽温度降低,燃尽时间缩短,可燃性指数及燃尽指数明显提高;O2/CO2气氛下煤粉燃烧基本属于一级反应,动力学参数随燃烧气氛与煤质变化的不同有较大差异.  相似文献   

15.
采用热重分析法研究富氧燃烧(O_2/CO_2)气氛、O_2体积分数和煤粉活性对褐煤、烟煤、无烟煤3种煤粉燃烧性能的影响,并进行分温度区间的燃烧反应动力学分析。结果表明:褐煤和无烟煤发生非均相着火,烟煤发生均相-非均相着火;相比空气气氛,O_2体积分数相同的O_2/CO_2气氛下煤粉的着火温度和燃尽温度升高,燃尽时间延长;在O_2/CO_2气氛下,当O_2体积分数增大时,煤粉着火温度和燃尽温度降低,燃尽时间缩短;相同气氛下,煤粉活性显著影响其着火和燃尽;根据综合燃烧特性指数判断,增大O_2体积分数显著改善了煤粉的燃尽特性;在低温区,煤粉燃烧属于0.3级反应,在高温区则为1~2.5级反应。  相似文献   

16.
为了研究植物化工醇废液的热解反应机理,将废液置于氮气气氛下进行加热反应。利用热重分析仪考察了不同升温速率对废液热解反应影响,得到了TG/DTG曲线。实验结果表明废液热解反应有五个波动峰,以及蒸发、热解和无机盐反应三个过程,利用Coats-Redfern法计算了动力学参数,热解过程活化能和频率因子均最小,无机盐反应过程最大,活化能大小与升温速率和反应阶段有关。改变升温速率并不会明显改变热解反应特性,热解过程主要是挥发分析出,失重比和失重速率均最大。  相似文献   

17.
烟煤煤焦的CO2气化反应   总被引:1,自引:0,他引:1  
采用TG-FTIR方法,在反应温度为950~1300℃时,研究了几种典型煤种及其在高温下慢速和快速热解煤焦的CO2气化反应特性.对4种原煤及其1200℃快、慢速热解条件下煤焦气化产物CH4和CO进行了实时检测和分析.同时对煤焦的孔隙结构和化学组成进行了分析.结果表明,各种热解煤焦的反应速率随气化温度的升高而增大,当达到最大值后随温度的升高而下降;4种煤焦的活化能随热解和气化温度的升高而增大;煤焦气化过程释放CH4和CO的特性与原煤的趋势相似,但原煤热解气化过程中释放CH4的质量浓度比不同热解速率制得煤焦的热解气化释放CH4的质量浓度高出2个数量级,快焦相比慢焦释放出更高质量浓度的CH4;各种煤焦的BET比表面积都较小(除神府慢焦外都小于2 ㎡/g);快焦的气化活性比慢焦的好.  相似文献   

18.
O2/CO2气氛下煤粉的燃烧规律与动力学特性   总被引:3,自引:0,他引:3  
在O2/N2及O2/CO2气氛下,利用热重法(TG)进行了3种煤粉的非等温燃烧试验.结果表明:在相同O2浓度下,不同气氛并未引起燃烧规律的变化,O2/CO2气氛可以取得O2/N2条件的燃烧效果;O2浓度在40%的范围内,随着O2浓度的提高,煤粉着火点和失重峰温度降低较为明显.此外,采用普适积分法对燃烧过程的动力学参数进行计算.结果表明:不同的反应区段存在不同的化学反应机理,但气氛的改变并未引起化学反应机理的变化,同一煤种活化能E在各个工况下的差异可由"动力学补偿效应"解释,且该计算函数适合研究已有条件下的化学反应机理.  相似文献   

19.
《可再生能源》2013,(7):70-76
利用加压热重仪对纤维素进行了热重分析实验,获得了不同升温速率(5,10,20 K/min)和不同压力(0.1,0.5,1,1.5,2 MPa)条件下的热重曲线TG和失重速率曲线DTG,并通过热分析数学方法获得了热解动力学参数。结果表明,在各压力条件下,提高升温速率,纤维素主热解区间均往高温区移动,热解略有加深;在各升温速率条件下,增大压力,主热解区间均往低温区移动,热解时间缩短,剩余残渣百分比增大;在同一升温速率下,随着压力的增大,热解活化能增大,且升温速率越大,活化能随压力增大越明显;在同一压力下,随着升温速率的提高,热解活化能增大,且压力越大,活化能随升温速率增大趋势越明显;在各条件下热解活化能和指前因子存在着较好的补偿效应。  相似文献   

20.
生物质定向气化可以制备富氢燃气和一定化学当量比的合成气(用于合成醇、醚等),同时有效地减少温室气体排放,是一种可持续的清洁能源转化技术。文章基于生物质定向气化这一背景,结合实际工业生产,采用TG/DTA系统对生物质定向气化条件下CaO吸收CO2的特性进行了研究。实验结果表明:升温速率由10℃/min增加到50℃/min,CaO变温吸收CO2的反应都在800℃左右达到吸收与煅烧平衡,且CaO转化率随升温速率增大而减小;CaO转化率和质量变化速率随CO2浓度增加而增大,根据反应平衡时CO2浓度与温度的关系拟合出CO2平衡分压公式为RCO2,eq=1.16×108exp-21!399/T";CaO恒温吸收CO2的最终转化率随吸收温度的升高先增加后减小,生物质定向气化中CaO吸收CO2的最佳温度为700~750℃;循环吸收实验中CaO转化率随循环次数增加而减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号