共查询到19条相似文献,搜索用时 78 毫秒
1.
目前450 L以上的高压大容积碳纤维全缠绕气瓶(以下简称III型气瓶)国内尚处于研究阶段,无现行国家标准。作者以45 MPa 500 L III型气瓶为研究对象,开展该类型气瓶的设计研究。依据网格理论,在爆破压力下完成碳纤维缠绕层的安全设计研究。对高压大容积III型气瓶工况下铝内胆与缠绕层的受力情况进行分析,在保证结合面不失效的前提下,完成该类型气瓶内胆设计。III型气瓶在爆破极限压力下,可将缠绕壳体视为正交异性薄壁壳体结构,壳体内部应变位移关系相同情况下,对内胆进行强度校核计算,确保瓶体内胆的安全性。 相似文献
2.
3.
《中国新技术新产品》2015,(11)
利用纤维缠绕成型技术制造的大型天然气压缩(CNG)气瓶具有较大的优点,包括质地轻巧,强度较高,耐疲劳性好而且具有一定的抗腐蚀性。上述优点可以满足远洋天然气的开发以及长途陆路运输。本文通过介绍目前发达国家以及我国现阶段对于大型纤维复合材料气瓶的研究及实际应用情况,同时根据目前我国的实际生产需要提出了研制大型CNG复合材料气瓶关键性突破性的核心技术和成型装备。 相似文献
4.
聚四氟乙烯/碳纤维增强聚酰亚胺复合体系的摩擦学性能 总被引:4,自引:2,他引:4
研究评价了不同PTFE含量的碳纤维增强P1复合材料的力学和摩擦学性能,并分析了在干摩擦和水润滑2种不同条件下的磨损表面形貌和磨损机理。研究表明:PTFE以10%添加时PI/CF/PTFE体系的机械性能最佳,而摩擦学性能以5%添加为佳;随PTFE含量的增加,复合材料的摩擦系数降低,磨损率增加。水润滑下,摩擦系数和磨损率比干摩擦下的都有相应的降低。干摩擦下,材料的磨损均以塑性变形、微观破裂及破碎为主导;水润滑下,这一机制显著减弱,归因于水的润滑和冷却作用。 相似文献
5.
铝内胆碳纤维全缠绕气瓶的铺层设计主要基于网格理论,但该方法仅能得出满足爆破强度的参数,不能满足对铝内胆疲劳性能的要求,因而难以适应气瓶产品的设计需要.将网格理论与铝合金S-N曲线结合,提出一种基于铝合金疲劳寿命设计纤维缠绕层厚度的新方法.依据该方法给出的缠绕层厚度构建有限元模型,通过数值模拟确定合理的自紧力,计算不同载荷下的气瓶应力分布,根据爆破试验数据,利用有限元模型预测气瓶的爆破强度、失效位置及失效形式.结果 表明:该设计方法可便捷地得出满足性能要求的气瓶缠绕层厚度;自紧力合理值可根据设计预期通过有限元分析得出;疲劳载荷下的缠绕层应力设计值与模拟值,偏差在允许范围内;运用该方法设计的气瓶能够同时满足疲劳和爆破性能指标,且失效位置、纤维应力比也符合标准规定. 相似文献
6.
7.
8.
采用双螺杆共混挤出法,在热塑性聚酰亚胺(TPI)树脂中添加碳纤维(CF)进行复合增强,实验研究了碳纤维种类、加入量及成型方法对复合材料力学性能的影响.结果表明:碳纤维的加入能显著提高材料的常温和高温力学强度,并与碳纤维种类有关;复合材料的拉伸和弯曲强度均随着碳纤维加入量的增大而升高;相对于模压成型方法,注塑成型可获得更高强度的复合材料.由扫描电镜(SEM)观察到的材料拉伸和弯曲断面的微结构形貌,初步探讨了碳纤维的增强机理. 相似文献
9.
浅析呼吸器用复合气瓶的定期检验 总被引:2,自引:0,他引:2
近年来,作为在消防、抢险以及特殊作业工况下普遍使用的有效呼吸装置——呼吸器的使用安全引起了广泛的关注。呼吸器用复合气瓶是呼吸器的重要组成部分。通过对其定期检验的重要性及现状、发现的问题、质量控制、应注意的问题等进行叙述分析,说明了定期检验对呼吸器用复合气瓶的重要性。 相似文献
10.
用热重分析仪分析了KH-304热固性聚酰亚胺树脂及其碳纤维复合材料在氮气和空气中的热分解过程,计算了它们在氮气和空气中的热分解活化能,比较了两者的高温热稳定性。 相似文献
11.
通过模压成型制备了碳纤维与空心微珠共混改性的聚酰亚胺复合材料,采用MRH-3型摩擦磨损试验机研究了空心微珠含量、滑动速度及载荷对复合材料摩擦学性能的影响,并对其磨损形貌及机制进行了分析.结果表明:空心微珠-碳纤维/聚酰亚胺复合材料摩擦学性能优于其单独填充的聚酰亚胺基复合材料;空心微珠含量对共混改性的复合材料摩擦系数影响不大,但其磨损率随着空心微珠含量的增加先减小后增大;15%空心微珠-10%碳纤维(质量分数)共混增强的复合材料的减摩耐磨性能最佳;随着滑动速度提高,空心微珠-碳纤维/聚酰亚胺复合材料的摩擦系数下降,磨损率增大;空心微珠-碳纤维/聚酰亚胺复合材料摩擦系数随着载荷增加先下降后上升,而磨损率则随着载荷增加而增大;空心微珠-碳纤维/聚酰亚胺的主要磨损机制在较低载荷时为磨粒磨损,在较高载荷时为粘着磨损和磨粒磨损. 相似文献
12.
通过模压成型制备了碳纤维与空心微珠共混改性的聚酰亚胺复合材料, 采用MRH-3型摩擦磨损试验机研究了空心微珠含量、滑动速度及载荷对复合材料摩擦学性能的影响, 并对其磨损形貌及机制进行了分析。结果表明: 空心微珠-碳纤维/聚酰亚胺复合材料摩擦学性能优于其单独填充的聚酰亚胺基复合材料; 空心微珠含量对共混改性的复合材料摩擦系数影响不大, 但其磨损率随着空心微珠含量的增加先减小后增大; 15%空心微珠-10%碳纤维(质量分数)共混增强的复合材料的减摩耐磨性能最佳; 随着滑动速度提高, 空心微珠-碳纤维/聚酰亚胺复合材料的摩擦系数下降, 磨损率增大; 空心微珠-碳纤维/聚酰亚胺复合材料摩擦系数随着载荷增加先下降后上升, 而磨损率则随着载荷增加而增大; 空心微珠-碳纤维/聚酰亚胺的主要磨损机制在较低载荷时为磨粒磨损, 在较高载荷时为粘着磨损和磨粒磨损。 相似文献
13.
14.
15.
复合处理碳纤维增强聚酰亚胺复合材料力学性能 总被引:2,自引:1,他引:2
采用浓硝酸氧化和聚酰亚胺(PI)包覆复合方法对短切碳纤维(CF)进行表面改性,提高CF增强热塑性聚酰亚胺复合材料(CF/TPI)力学性能。采用比表面积及孔容分析、原子力显微镜、扫描电子显微镜、热重分析仪研究了CF表面处理前后结构和形貌的变化。结果表明:CF经浓HNO3处理后比表面积增加144.2%,CF表面沟壑加深;复合处理后有PI层包覆在 CF表面;包覆处理后CF耐热性能提高。力学性能测试表明,经过包覆处理后CF/TPI复合材料的拉伸强度比未处理的提高11.34%,弹性模量提高109.2%,弯曲强度提高18.78%,冲击强度提高74.15%。 相似文献
16.
通过均苯四甲酸二酐(PMDA)与4,4-二氨基二苯基醚(ODA)缩聚反应制备出聚酰胺酸(PAA),而后采用溶胶-凝胶(sol-gel)法和超声波机械共混法制备出含纳米二氧化硅(nano-SiO2)、纳米三氧化铝(nano-Al2O3)、纳米二氧化钛(nano-TiO2)不同量的PPA/无机纳米共混胶液,经高温亚胺化得到聚酰亚胺(PI)/无机纳米复合材料.利用热学综合分析仪,在N2的保护下,以1℃/min升温速度,对复合材料的热失重、分解温度等热学性能进行分析比较.结果表明:无机纳米颗粒对聚酰亚胺材料的热失重温度的影响较小,提高聚酰亚胺的热失重、分解温度需要从改善聚酰亚胺分子结构出发. 相似文献
17.
采用石墨、 炭纤维填充改善热塑性聚酰亚胺(TPI)材料的导热性能, 研究了填料物性对材料力学性能和导热行为的影响。在此基础上, 用Nielsen理论模型和有限元方法模拟了复合材料的导热行为, 进一步探讨了填料形状对材料导热系数的影响。研究表明: 炭纤维、 石墨填充TPI均能提高复合材料的导热性能; 用Nielsen理论模型预测石墨、 炭纤维填充TPI材料导热系数与实验值存在一定偏差; 采用有限元法模拟二维复合材料稳态导热行为, 能有效地预测复合材料的导热系数。基于材料内部热流分布模拟分析发现, 填料自身导热性能对复合材料导热行为的影响不明显; 与圆形填料相比, 方形填料改善材料导热性能效果显著。 相似文献
18.
采用空气氧化法和硝酸氧化法对碳纤维进行表面处理,研究了碳纤维(CF)增强热塑性聚酰亚胺(TPI)复合材料的力学性能。采用Boehm滴定方法测定了经过硝酸处理后CF表面酸性官能团数量。结果表明:CF表面酸性官能团的数量随着浓硝酸处理时间的增加而增加;浓硝酸处理效果比空气氧化好,当浓硝酸处理CF的时间为20 min时,CF/TPI复合材料拉伸强度和弯曲强度分别提高10 %和14 %,XPS表明此时CF表面活性官能团比未处理增加35.89 %。AFM表明,浓硝酸对CF表面刻蚀沟明显;SEM表明,CF与TPI基体之间形成良好的界面,CF起到了增强效果。 相似文献
19.
采用碳纳米管电泳沉积到碳纤维表面,达到改性碳纤维复合材料界面性能的目的.将羧基化的碳纳米管在十六烷基三甲基溴化铵的分散作用下制备成不同浓度的水溶液,在电场作用下,将碳纳米管电泳沉积到碳纤维表面.通过扫描电子显微镜、X-射线光电子能谱以及动态接触角对处理前后的碳纤维的表面形貌、表面元素及浸润性进行表征.研究结果表明,经过电泳沉积碳纳米管后,碳纤维的表面粗糙度、表面极性官能团含量及表面能都有较大提高,纤维的浸润性得到提高.对复合材料的界面性能分析表明,复合材料的界面性能在经过处理后有很大提高,当碳纳米管的质量浓度为0.1%,界面剪切强度提高了72.93%. 相似文献