共查询到18条相似文献,搜索用时 125 毫秒
1.
稀疏表示因其具有稀疏性、特征保持性等一些特点而被广泛应用于图像处理等领域,为解决图像处理中的去噪问题,提出一种基于图像特征稀疏表示的贝叶斯去噪模型.利用K-means和主成分分析方法计算已分割图像块对应字典的矩阵系数,采用正则化约束条件,迭代计算获取的图像字典与原始图像字典之间的差距,优化噪声图片稀疏特征表示的字典,直到达到优化条件.实验结果表明,与传统的离散余弦变换去噪模型相比,该模型的峰值信噪比较高,随着噪声的不断提高,与噪声图像峰值信噪比的差距也越来越大,且图像失真较少. 相似文献
2.
《计算机应用与软件》2015,(12)
图像去噪是图像处理中的关键问题之一,也是图像后续处理的基础,结合近年来兴起的稀疏表示理论,能更好地处理图像去噪问题。通过引入图像稀疏表示框架,从含噪图像自身中优化训练字典,初始字典选择构造非采样小波字典来更好地捕获图像信息,通过反复迭代学习获得高度自适应的过完备稀疏字典,重构图像时构造先验概率矩阵,结合后验概率估计与传统的正交匹配算法提出改进的图像重构算法。实验结果表明,与其他去噪方法相比,该算法具有良好的去噪能力,能较好地保持图像的边缘和细节特征,去噪后的图像更为清晰。 相似文献
3.
针对胃黏膜肿瘤细胞图像的高维性及复杂性的特点,为了提高稀疏表示图像识别的鲁棒性,提出了一种基于字典学习的正则化鲁棒稀疏表示(RRC)肿瘤细胞图像识别方法。该方法首先将所有的原始染色肿瘤细胞图像转化为灰度图像;然后利用具有Fisher判别约束的字典学习(FDDL)方法对肿瘤细胞图像训练样本的全局特征进行字典学习,得到具有类别标签的结构化字典;最后将具有判别性的新字典用于RRC模型进行分类识别。RRC模型是基于最大后验概率准则,将稀疏保真度表示为余项的最大后验概率函数,最终识别问题转化为求解正则化加权范数的优化逼近问题。将提出的识别方法应用于肿瘤细胞图像的最高识别率为92.4%,表明该方法能够有效地实现肿瘤细胞图像的分类。 相似文献
4.
5.
本文对稀疏表示分类人脸识别方法进行了综述,着重探讨了其中的稀疏分解算法、字典学习、分类器设计三方面内容。最后,本文对稀疏表示分类人脸识别方法进行了总结,并指出需要进一步研究的问题。 相似文献
6.
目的 基于分类的稀疏字典去噪算法改善了字典训练阶段的效率问题,但稀疏分解阶段仍是全字典匹配,影响算法运行速度。为了解决稀疏去噪算法在稀疏分解阶段因复杂矩阵运算及字典全局搜索导致的算法效率低,以及冗余的稀疏字典因无法描述图像具体特征而影响图像去噪效果的问题,提出改进算法。方法 首先稀疏分解阶段,在原正交匹配追踪算法基础上引入字典原子聚类思想,提出局部正交匹配追踪算法,将全局搜索优化为局部搜索;为保证局部搜索仍能保持良好的匹配结果,提出近邻择优策略,计算聚类中心与信号原子的距离,从而按照某一阈值自适应地选择最优的n个子字典作为稀疏分解的匹配空间;最后将图像分解为内容簇和背景簇,对内容簇采用基于近邻的局部K奇异值分解(K-SVD)算法去噪,背景簇采用均值滤波方法去噪。结果 对USC标准数据库中大量图像进行去噪实验,本文算法去噪结果的峰值信噪比值比K-SVD算法平均提高了1.53 dB,比2维块匹配(BM3D)算法平均提高了0.72 dB,比聚类的稀疏表示去噪(CSR)算法平均提高了0.5 dB;运行时间比原算法提高了23.2%。结论 本文算法针对灰度图像去噪,在去噪效果及去噪效率方面均有改善,尤其对细节纹理较丰富的灰度图像去噪具有一定的应用价值。 相似文献
7.
稀疏表示理论认为在合适的冗余字典下,图像存在最为稀疏的表示,字典的过完备性,使得通过提取很少量的大系数便能捕获到图像中的重要信息,而且对噪声更加鲁棒。针对图像去噪,为了更好地保留图像特征信息,考虑人眼视觉特性,研究过完备字典对噪声图像特征和边缘信息的有效表示,提出以结构相似为信息保真度的特征保留的稀疏表示去噪算法。实验结果表明,该算法能更好地对图像去噪,对特征和边缘等信息的保留能力更强,得到的图像视觉效果更佳。 相似文献
8.
针对非局部均值去噪算法中噪声对结构聚类影响的问题,提出了一种基于联合滤波预处理的聚类稀疏表示图像去噪算法。利用维纳滤波和巴特沃斯滤波联合滤波处理提取含噪图像中的高频分量,同时减小了噪声对聚类的影响;利用非局部均值去噪的思想将高频图像块进行聚类,每一类图像块单独进行字典学习,增强字典的自适应性;利用多循环字典更新的K-SVD算法进行类内字典学习,增强字典的描述能力。实验结果表明,与传统的K-SVD算法相比,该算法能有效保留图像的结构信息,并且提升了图像的去噪效果。 相似文献
9.
从字典的相干性边界条件出发, 提出一种基于极分解的非相干字典学习方法(Polar decomposition based incoherent dictionary learning, PDIDL), 该方法将字典以Frobenius范数逼近由矩阵极分解获取的紧框架, 同时采用最小化所有原子对的内积平方和作为约束, 以降低字典的相干性, 并保持更新前后字典结构的整体相似特性. 采用最速梯度下降法和子空间旋转实现非相干字典的学习和优化. 最后将该方法应用于合成数据与实际语音数据的稀疏表示. 实验结果表明, 本文方法学习的字典能逼近等角紧框架(Equiangular tight-frame, ETF), 实现最大化稀疏编码, 在降低字典相干性的同时具有较低的稀疏表示误差. 相似文献
10.
从噪声图像中恢复干净的图像是对图像进行有效处理与分析的首要前提之一,而去除噪声的同时保持图像的特征则是图像去噪的一个具有挑战性的问题.为了在去除噪声的同时尽量保持图像的局部结构特征,提出了一种基于图拉普拉斯正则化稀疏变换学习的图像去噪算法.通过引入图拉普拉斯正则化对邻域像素进行约束,可以较好地保护相邻像素之间的相关性,... 相似文献
11.
12.
Leilei Geng Zexuan Ji Yunhao Yuan Yilong Yin 《IEEE/CAA Journal of Automatica Sinica》2018,5(2):555-563
Sparse representation models have been shown promising results for image denoising. However, conventional sparse representation-based models cannot obtain satisfactory estimations for sparse coefficients and the dictionary. To address this weakness, in this paper, we propose a novel fractional-order sparse representation (FSR) model. Specifically, we cluster the image patches into K groups, and calculate the singular values for each clean/noisy patch pair in the wavelet domain. Then the uniform fractional-order parameters are learned for each cluster. Then a novel fractional-order sample space is constructed using adaptive fractional-order parameters in the wavelet domain to obtain more accurate sparse coefficients and dictionary for image denoising. Extensive experimental results show that the proposed model outperforms state-of-the-art sparse representation-based models and the block-matching and 3D filtering algorithm in terms of denoising performance and the computational efficiency. 相似文献
13.
基于稀疏表示模型的彩色图像超分辨率重建方法通常采用基于图像块的稀疏编码过程,易导致稀疏表示不稳定、重建彩色图像存在细节模糊和色彩伪影的问题。为此,提出一种非局部稀疏表示与色彩通道约束相结合的重建算法。将待重建的低分辨率彩色图像转换到YCbCr色彩空间,利用非局部稀疏模型对低分辨率彩色图像的亮度信息进行重建,再将重建图像转换回RGB色彩空间,应用色彩通道约束方法去除色彩伪影,从而在保证图像细节信息重建质量的同时提升其色彩伪影的去除能力。实验结果表明,与双三次插值算法、ScSR算法等相比,该算法重建图像的峰值信噪比和结构相似性较高。 相似文献
14.
15.
在基于多光谱(MS)影像和全色(PAN)遥感影像融合中,提高融合影像质量的一个关键问题是如何有效提取PAN影像的纹理特征信息,并有针对性地对MS影像进行信息注入.因此,文中提出基于相位拉伸变换(PST)相位约束的MS和PAN影像稀疏融合算法.首先对MS和PAN影像进行高斯滤波.对于中低频信息,基于PST相位差对影像中边缘和纹理区域的敏感性,通过高频信息PST的相位差获得融合权重约束.对于高频信息,通过学习PAN影像的高频信息获得训练字典,并利用字典对MS和PAN影像的高频信息进行稀疏表示和融合,提高融合高频信息的准确度.算法在一定程度上克服传统融合方法对边缘纹理区域融合效果较差和光谱信息扭曲等现象,取得更好的融合效果.大量仿真实验验证算法的有效性. 相似文献
16.
This paper addresses the recovery of original images from multiple copies corrupted with the noises, which can be represented sparsely in some dictionary. Sparse representation has been proven to have strong ability to denoise. However, it performs suboptimally when the noise is sparse in some dictionary. A novel joint sparse representation (JSR)-based image denoising method is proposed. The images can be recovered well from multiple noisy copies. All copies share a common component—the image, while each individual measurement contains an innovation component—the noise. Our method can separate the common and innovation components, and reconstruct the images with the sparse coefficients and the dictionaries. Experiment results show that the performance of the proposed method is better than that of other methods in terms of the metric and the visual quality. 相似文献
17.
利用GMM模型对自然图像块进行学习,对高斯分量的协方差矩阵做PCA,用其特征向量组成的矩阵作为子字典,用特征值 的大小作为对稀疏系数加权的依据,并将该模型应用到CSR模型中得到一种新的去噪模型,并给出模型的优化算法。为了验证提出的模型的有效性,设计了比较的仿真实验,实验表明与一些先进的模型相比,该方法具有优势。 相似文献