首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《软件》2019,(8):6-8
目前人脸识别技术被广泛应用于实际生活各个领域,尤其是在实时视频场景下应用越来越普及,因此对人脸识别的研究具有重大价值。通过应用Keras框架和深度学习相关知识构建深度卷积神经网络,训练出有效的人脸识别模型,并应用到实时视频场景进行人脸检测和识别,最后通过实验表明此方法能够有较高的正确率,并能准确识别视频中的人脸。  相似文献   

2.
近年来,随着深度学习的发展,卷积神经网络已经广泛运用到图像识别领域,它不仅提高了识别的准确率,同时自特征提取方面的效果也优于许多传统的算法。提出一种基于卷积神经网络的人脸识别算法。该方法主要涉及两方面,一是使用卷积神经网络对训练集进行特征提取;二是将提取的特征图片输入改进的神经网络进行训练及识别。通过MATLAB进行了仿真实验,对比结果表明卷积神经网络有很好的特征提取性能及良好识别效果,比现有的算法有很大的优势。  相似文献   

3.
《软件》2019,(10):16-19
为了提高人脸识别算法的识别性能,提出了基于Prewitt算子的卷积神经网络人脸识别方法。首先通过直方图均衡化和Prewitt算子对人脸图像进行预处理;然后将其输入卷积神经网络进行训练,并采用指数衰减法来设置学习率加快收敛速度,使用L2正则化和Dropout来防止过拟合。该方法在ORL人脸数据库上的识别时间为0.2 s,识别率达到了98.1%。实验结果表明,利用Prewitt算子和改进的卷积神经网络能缩短识别时间,并且能提高识别率,具有一定优越性。  相似文献   

4.
将卷积神经网络应用到人脸识别的领域当中,能够有效提升识别工作落实的准确程度,最终与大数据和云计算等技术相互配合,就能够构建成为一个比较完整的人脸检测和识别系统,目前我国常见的此类系统,识别工作落实的准确率已经能够达到>97%的程度。本文先分析了卷积神经网络的工作原理以及特点,又在此基础上设计和规划了实际的人脸识别实现策略,希望能够为相关工作的落实提供合理参考。  相似文献   

5.
近期,人脸识别技术在社会上广受关注,其非接触式的识别特性相较于指纹等传统接触式识别方法展现出明显优势。在深度学习领域,由于传统卷积神经网络在人脸识别任务上的准确性和速度尚有提升空间,因此提出采用改进的AlexNet卷积神经网络进行人脸识别。通过实验验证,与传统卷积网络相比,改进后的AlexNet在人脸识别上不仅准确度更高,而且识别过程更为稳定。  相似文献   

6.
基于深度卷积神经网络的人脸识别技术综述   总被引:1,自引:0,他引:1  
人脸识别是计算机视觉的重要应用之一,广义的人脸识别包含图像采集、人脸检测、人脸对齐、特征表示等过程。人脸识别的发展史主要是人脸特征表示方法的变迁史。针对特征的表示方法,从人脸识别技术的发展历史、研究现状和未来发展三个方面进行综述:分阶段对传统的几类经典的人脸识别算法进行回顾和总结;以深度学习算法的诞生过程为切入点,重点分析了在人脸识别中取得突破性进展的深度卷积神经网络DCNN(deep convolutional neural networks)的技术思想和关键问题;针对人脸识别和深度学习算法的重大挑战,展望了未来可能存在的发展方向。  相似文献   

7.
8.
传统的人脸识别技术对人脸图像特征的提取及分类器选择均较为复杂,且识别率也不高,随着卷积神经网络从手写数字识别到人脸识别的技术不断成熟,提出了一种利用Python+Keras框架测试CNN的人脸识别算法.该方法主要涉及两方面,一是通过改变隐藏层神经元数量查看对网络的影响;另一个是通过改变卷积层1和卷积层2特征图数量查看对...  相似文献   

9.
提出了卷积神经网络与支持向量机结合的方法运用于遮挡人脸识别。通过卷积神经网络的卷积、下采样和Softmax的特征提取处理,由支持向量机完成后续的训练和识别。利用AR人脸库进行实验,并和传统的人脸识别方法进行比较分析,实验结果表明本文的方法有更高的识别率。  相似文献   

10.
柯鹏飞  蔡茂国  吴涛 《计算机工程》2020,46(2):262-267,273
针对复杂卷积神经网络(CNN)在中小型人脸数据库中的识别结果容易出现过拟合现象,提出一种基于改进CNN网络与集成学习的人脸识别算法。改进CNN网络结合平面网络和残差网络的特点,采用平均池化层代替全连接层,使得网络结构简单且可移植性强。在改进CNN网络的基础上,利用基于投票法的集成学习策略将所有个体学习器结果凸组合为最终结果,实现更准确的人脸识别。实验结果表明,该算法在Color FERET、AR和ORL人脸数据库上的识别准确率分别达到98.89%、99.67%和100%,并且具有较快的收敛速度。  相似文献   

11.
卷积神经网络是一种很好的特征提取器,但却不是最佳的分类器,而极限学习机能够很好地进行分类,却不能学习复杂的特征,根据这两者的优点和缺点,将它们结合起来,提出一种新的人脸识别方法。卷积神经网络提取人脸特征,极限学习机根据这些特征进行识别。本文还提出固定卷积神经网络的部分卷积核以减少训练参数,从而提高识别精度的方法。在人脸库ORL和XM2VTS上进行测试的结果表明,本文的结合方法能有效提高人脸识别的识别率,而且固定部分卷积核的方式在训练样本少时具有优势。  相似文献   

12.
针对深度卷积神经网络随着卷积层数增加而导致网络模型难以训练和性能退化等问题,提出了一种基于深度残差网络的人脸表情识别方法。该方法利用残差学习单元来改善深度卷积神经网络模型训练寻优的过程,减少模型收敛的时间开销。此外,为了提高网络模型的泛化能力,从KDEF和CK+两种表情数据集上选取表情图像样本组成混合数据集用以训练网络。在混合数据集上采用十折(10-fold)交叉验证方法进行了实验,比较了不同深度的带有残差学习单元的残差网络与不带残差学习单元的常规卷积神经网络的表情识别准确率。当采用74层的深度残差网络时,可以获得90.79%的平均识别准确率。实验结果表明采用残差学习单元构建的深度残差网络可以解决网络深度和模型收敛性之间的矛盾,并能提升表情识别的准确率。  相似文献   

13.
为了提高脉搏波识别的准确率,提出改进的深度融合神经网络MIRNet2.首先,经过主波提取、划分周期和制作hdf5数据集等,获得Caffe可处理的数据集.其次,提出由Inception模块和残差模块构成的融合网络Inception-ResNet (IRNet),包含IRNet1、IRNet2和IRNet3.在此基础上,改进Inception模块、残差模块和池化模块,构造Modified Inception-ResNet (MIRNet),包含MIRNet1和MIRNet2.与本文其它神经网络相比,MIRNet2的分类性能最好,特异性、灵敏度和准确率分别达到87.85%、88.05%和87.84%,参数量和运算量也少于IRNet3.  相似文献   

14.
针对当前许多算法在非约束条件下特征判别能力不强、人脸识别性能不佳等问题,提出一种基于深度学习的改进人脸识别算法,通过训练多任务级联卷积神经网络,完成非约束图像的人脸检测和人脸归一化,提高训练图像的人脸信息,减少对模型的干扰。同时使用Softmax损失与中心损失联合监督训练模型,优化类内聚合、类间分散。实验结果表明,该算法提高了模型的特征判别能力,在LFW标准测试集上达到了较高的识别率。  相似文献   

15.
针对传统深度卷积神经网络模型复杂、识别速度慢的问题,提出一种基于多任务学习的人脸属性识别方法。通过轻量化残差模块构建基础网络,根据属性类之间的关联关系设计共享分支网络,以大幅减少网络参数和计算开销。以多任务学习的方式联合优化各分支网络与基础网络的参数,利用关联属性间的共同特征实现人脸属性识别。采用带权重的交叉熵作为损失函数监督训练网络模型,改善正负样本数不均衡问题。在公开数据集CelebA上的实验结果表明,该方法的识别错误率低至8.45%,空间开销仅2.7 MB,在CPU上每幅图预测时间低至15ms,方便部署在资源有限的移动或便携式设备上,具有实际应用价值。  相似文献   

16.
手写汉字识别是模式识别与机器学习的重要研究方向和应用领域;近年来,随着深度学习理论方法的完善、新技术的层出不穷,深度神经网络在图像识别分类、图像生成等典型应用中取得了突破性的进展,其中,深度残差网络作为最新的研究成果,已成功应用于手写数字识别、图片识别分类等多个领域;将研究深度残差网络在脱机孤立手写汉字识别中的应用方法,通过改进残差学习模块的单元结构,优化深度残差网络性能,同时通过对训练集的预处理,从数据层面实现训练生成模型性能的提升,最后设计实验,验证深度残差网络、End-to-End模式在脱机手写汉字识别中的可行性,分析、总结存在的问题及今后的研究方向。  相似文献   

17.
验证码作为一种安全手段,被广泛应用于互联网领域.本文提出了一种基于卷积神经网络的图像验证码识别方法,通过卷积层级联、残差学习、全局池化、分组卷积等技术手段,在保证识别准确率不受影响的前提下,大大降低了网络的参数量.本文以铁路购票网站验证码和正方教务系统验证码为例来测试模型性能.对于铁路购票网站验证码,实验结果显示本文提出的识别方法参数量最少,对图形和中文词组验证码的识别准确率分别达到98.76%和99.14%;对于正方教务系统验证码,本文方法参数量最少且识别准确率为87.30%.  相似文献   

18.
针对现有的动态手势识别方法对长时间序列的时空特征难以精确匹配的问题,提出了一种基于宽残差和双向长短时记忆网络的时空特征一致手势识别方法。首先使用已经训练好的3D卷积神经网络从视频的空间和时间维度同步提取出短时特征,再经双向空间长短时记忆网络同步解析后形成长时空特征连接单元,并作为残差网络的输入。为了验证算法的有效性,使用Kinect传感器构建了一个全新的多模式手势数据集,在三个手势识别公开数据集SLVM、Montalbano和SKIG上的实验表明,提出的方法有很好的性能表现,识别精度超越了目前已公开的最佳识别率。  相似文献   

19.
针对非协作通信条件下信号调制方式识别问题,提出了一种基于深度神经网络的调制方式自动识别新方法。该方法对接收到的信号进行预处理,生成星座图,并将星座图形状作为深度卷积神经网络的输入,根据训练好的网络模型对调制信号进行分类识别。与以往的识别方法相比,该方法利用卷积神经网络自动学习各种数字调制信号的星座图特征,克服了特征提取困难,通用性不强,抗噪声性能差等缺点,处理流程简单,并对星座图的形变具有不敏感性。针对4QAM、16QAM和64QAM三种典型的数字调制方式,进行了仿真实验,当信噪比大于4时,调制方式的识别正确率大于95%,实验结果表明,基于深度卷积神经网络的信号调制方式识别方法是有效的。  相似文献   

20.
孔玮  刘云  李辉  王传旭 《控制与决策》2021,36(7):1537-1546
行为识别技术具有巨大的应用前景和潜在的经济价值,广泛应用于视频监控、视频检索、人机交互、公共安全等领域.图卷积网络表现出基于图数据的依赖关系进行建模的强大功能,成为行为识别领域的研究热点.基于此,主要概述基于图卷积网络的行为识别方法.图卷积网络主要有两大方法:基于频谱的方法和基于空间的方法.首先,从不同侧面分析两种方法...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号