首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution of visual attention can be evaluated using eye tracking, providing valuable insights into usability issues and interaction patterns. However, when used in real, augmented, and collaborative environments, new challenges arise that go beyond desktop scenarios and purely virtual environments. Toward addressing these challenges, we present a visualization technique that provides complementary views on the movement and eye tracking data recorded from multiple people in real-world environments. Our method is based on a space-time cube visualization and a linked 3D replay of recorded data. We showcase our approach with an experiment that examines how people investigate an artwork collection. The visualization provides insights into how people moved and inspected individual pictures in their spatial context over time. In contrast to existing methods, this analysis is possible for multiple participants without extensive annotation of areas of interest. Our technique was evaluated with a think-aloud experiment to investigate analysis strategies and an interview with domain experts to examine the applicability in other research fields.  相似文献   

2.
The derivation, manipulation and verification of analytical models from raw data is a process which requires a transformation of information across different levels of abstraction. We introduce a concept for the coupling of data classification and interactive visualization in order to make this transformation visible and steerable for the human user. Data classification techniques generate mappings that formally group data items into categories. Interactive visualization includes the user into an iterative refinement process. The user identifies and selects interesting patterns to define these categories. The following step is the transformation of a visible pattern into the formal definition of a classifier. In the last step the classifier is transformed back into a pattern that is blended with the original data in the same visual display. Our approach allows in intuitive assessment of a formal classifier and its model, the detection of outliers and the handling of noisy data using visual pattern‐matching. We instantiated the concept using decision trees for classification and KVMaps as the visualization technique. The generation of a classifier from visual patterns and its verification is transformed from a cognitive to a mostly pre‐cognitive task.  相似文献   

3.
4.
With increasing numbers of flights worldwide and a continuing rise in airport traffic, air-traffic management is faced with a number of challenges. These include monitoring, reporting, planning, and problem analysis of past and current air traffic, e.g., to identify hotspots, minimize delays, or to optimize sector assignments to air-traffic controllers. To cope with these challenges, cyber worlds can be used for interactive visual analysis and analytical reasoning based on aircraft trajectory data. However, with growing data size and complexity, visualization requires high computational efficiency to process that data within real-time constraints. This paper presents a technique for real-time animated visualization of massive trajectory data. It enables (1) interactive spatio-temporal filtering, (2) generic mapping of trajectory attributes to geometric representations and appearance, and (3) real-time rendering within 3D virtual environments such as virtual 3D airport or 3D city models. Different visualization metaphors can be efficiently built upon this technique such as temporal focus+context, density maps, or overview+detail methods. As a general-purpose visualization technique, it can be applied to general 3D and 3+1D trajectory data, e.g., traffic movement data, geo-referenced networks, or spatio-temporal data, and it supports related visual analytics and data mining tasks within cyber worlds.  相似文献   

5.
To attack the problem of handling increasingly vast stores of information, we discuss a new approach to data exploration that requires the close coupling of man and machine. We call this approach discovery visualization to emphasize the importance of visual display and interaction. This approach aims to discover new relations, new features, and new knowledge. A key element in discovery visualization lies in heightening the machine's awareness of users so they have, for example, focus-based manipulation, based on where and how closely they look at the displayed scene, in addition to direct manipulation. This process makes no sense unless the machine can respond immediately. Further, we promote the concept of continuous interaction with constant feedback between man and machine, and constant unfolding of the data. Finally, automated response must combine with user selection to achieve and sustain animated action, even in data sets of great or varying complexity  相似文献   

6.
7.
It remains challenging for information visualization novices to rapidly construct visualizations during exploratory data analysis. We conducted an exploratory laboratory study in which information visualization novices explored fictitious sales data by communicating visualization specifications to a human mediator, who rapidly constructed the visualizations using commercial visualization software. We found that three activities were central to the iterative visualization construction process: data attribute selection, visual template selection, and visual mapping specification. The major barriers faced by the participants were translating questions into data attributes, designing visual mappings, and interpreting the visualizations. Partial specification was common, and the participants used simple heuristics and preferred visualizations they were already familiar with, such as bar, line and pie charts. We derived abstract models from our observations that describe barriers in the data exploration process and uncovered how information visualization novices think about visualization specifications. Our findings support the need for tools that suggest potential visualizations and support iterative refinement, that provide explanations and help with learning, and that are tightly integrated into tool support for the overall visual analytics process.  相似文献   

8.
High volume data with complicated relationships can render human decision-making a frustrating task. Computer-generated visualization is an approach that can assist decision-makers in gaining insight into the data so that eventually superior solutions can be developed. Current research in visualization has addressed how to deal with high volume data that have some inherent structures (such as hierarchy, network, or geographical relationships). Many management domains, however, have data that lack obvious structures to provide a base for computer-generated visualization. This paper reports a specially designed technique for visualizing such management data. Data objects involved in the decision-making tasks are assigned with geometry (called visual abstract) in Euclidean space. Then a set of image construction rules are applied to connect multiple visual abstracts into images that can be displayed on a computer screen. We use two business domains, manufacturing production planning and resource constrained project scheduling, to illustrate this visualization technique.  相似文献   

9.
大屏数据可视化是对数据分析结果的表达,是数据赋能决策的重要环节.针对大屏数据可视化软件开发周期较长、成本较高等问题,本文基于Vue前端框架及Echarts可视化组件,研制开发了一个大屏数据可视化易用工具C317DataUI,通过对可视化组件拖拽式操作进行界面布局,使用组件的数据连接面板进行数据配置管理,并提供了部分场景...  相似文献   

10.
Visual representations of time-series are useful for tasks such as identifying trends, patterns and anomalies in the data. Many techniques have been devised to make these visual representations more scalable, enabling the simultaneous display of multiple variables, as well as the multi-scale display of time-series of very high resolution or that span long time periods. There has been comparatively little research on how to support the more elaborate tasks associated with the exploratory visual analysis of timeseries, e.g., visualizing derived values, identifying correlations, or discovering anomalies beyond obvious outliers. Such tasks typically require deriving new time-series from the original data, trying different functions and parameters in an iterative manner. We introduce a novel visualization technique called ChronoLenses, aimed at supporting users in such exploratory tasks. ChronoLenses perform on-the-fly transformation of the data points in their focus area, tightly integrating visual analysis with user actions, and enabling the progressive construction of advanced visual analysis pipelines.  相似文献   

11.
Preconceptions and Individual Differences in Understanding Visual Metaphors   总被引:1,自引:0,他引:1  
Understanding information visualization is more than a matter of reading a series of data values; it is also a matter of incorporating a visual structure into one's own thinking about a problem. We have proposed visual metaphors as a framework for understanding high-level visual structure and its effect on visualization use. Although there is some evidence that visual metaphors can affect visualization use, the nature of this effect is still ambiguous. We propose that a user's preconceived metaphors for data and other individual differences play an important role in her ability to think in a variety of visual metaphors, and subsequently in her ability to use a visualization. We test this hypothesis by conducting a study in which a participant's preconceptions and thinking style were compared with the degree to which she is affected by conflicting metaphors in a visualization and its task questions. The results show that metaphor compatibility has a significant effect on accuracy, but that factors such as spatial ability and personality can lessen this effect. We also find a complex influence of self-reported metaphor preference on performance. These findings shed light on how people use visual metaphors to understand a visualization.  相似文献   

12.
When displaying thousands of aircraft trajectories on a screen, the visualization is spoiled by a tangle of trails. The visual analysis is therefore difficult, especially if a specific class of trajectories in an erroneous dataset has to be studied. We designed FromDaDy, a trajectory visualization tool that tackles the difficulties of exploring the visualization of multiple trails. This multidimensional data exploration is based on scatterplots, brushing, pick and drop, juxtaposed views and rapid visual design. Users can organize the workspace composed of multiple juxtaposed views. They can define the visual configuration of the views by connecting data dimensions from the dataset to Bertin's visual variables. They can then brush trajectories, and with a pick and drop operation they can spread the brushed information across views. They can then repeat these interactions, until they extract a set of relevant data, thus formulating complex queries. Through two real-world scenarios, we show how FromDaDy supports iterative queries and the extraction of trajectories in a dataset that contains up to 5 million data.  相似文献   

13.
Supporting exploratory visual analysis (EVA) is a central goal of visualization research, and yet our understanding of the process is arguably vague and piecemeal. We contribute a consistent definition of EVA through review of the relevant literature, and an empirical evaluation of existing assumptions regarding how analysts perform EVA using Tableau, a popular visual analysis tool. We present the results of a study where 27 Tableau users answered various analysis questions across 3 datasets. We measure task performance, identify recurring patterns across participants' analyses, and assess variance from task specificity and dataset. We find striking differences between existing assumptions and the collected data. Participants successfully completed a variety of tasks, with over 80% accuracy across focused tasks with measurably correct answers. The observed cadence of analyses is surprisingly slow compared to popular assumptions from the database community. We find significant overlap in analyses across participants, showing that EVA behaviors can be predictable. Furthermore, we find few structural differences between behavior graphs for open‐ended and more focused exploration tasks.  相似文献   

14.
Interactive graphics practitioners have long understood that viewing a virtual object by controlling the viewpoint dynamically is more illuminating than viewing a still image or even a precomputed animation. Dynamic manipulation engages a viewer's kinesthetic sense in addition to his visual sense, adding an immediacy to the exploration experience. Finding the right way to represent data has been an active topic of much thought and discussion since the beginnings of visualization. To explore dynamic visualization's power, the author constructed a tool (Calico), for creating and manipulating bivariate color mappings using several different color models. Using Calico, she conducted two experimental studies of the effects of control over the color mapping on accuracy, confidence, and preference  相似文献   

15.
Information visualization and visual data mining   总被引:12,自引:0,他引:12  
Never before in history has data been generated at such high volumes as it is today. Exploring and analyzing the vast volumes of data is becoming increasingly difficult. Information visualization and visual data mining can help to deal with the flood of information. The advantage of visual data exploration is that the user is directly involved in the data mining process. There are a large number of information visualization techniques which have been developed over the last decade to support the exploration of large data sets. In this paper, we propose a classification of information visualization and visual data mining techniques which is based on the data type to be visualized, the visualization technique, and the interaction and distortion technique. We exemplify the classification using a few examples, most of them referring to techniques and systems presented in this special section  相似文献   

16.
The nature of an information visualization can be considered to lie in the visual metaphors it uses to structure information. The process of understanding a visualization therefore involves an interaction between these external visual metaphors and the user's internal knowledge representations. To investigate this claim, we conducted an experiment to test the effects of visual metaphor and verbal metaphor on the understanding of tree visualizations. Participants answered simple data comprehension questions while viewing either a treemap or a node-link diagram. Questions were worded to reflect a verbal metaphor that was either compatible or incompatible with the visualization a participant was using. The results suggest that the visual metaphor indeed affects how a user derives information from a visualization. Additionally, we found that the degree to which a user is affected by the metaphor is strongly correlated with the user's ability to answer task questions correctly. These findings are a first step towards illuminating how visual metaphors shape user understanding, and have significant implications for the evaluation, application, and theory of visualization.  相似文献   

17.
In this paper, we introduce overview visualization tools for large-scale multiple genome alignment data. Genome alignment visualization and, more generally, sequence alignment visualization are an important tool for understanding genomic sequence data. As sequencing techniques improve and more data become available, greater demand is being placed on visualization tools to scale to the size of these new datasets. When viewing such large data, we necessarily cannot convey details, rather we specifically design overview tools to help elucidate large-scale patterns. Perceptual science, signal processing theory, and generality provide a framework for the design of such visualizations that can scale well beyond current approaches. We present Sequence Surveyor, a prototype that embodies these ideas for scalable multiple whole-genome alignment overview visualization. Sequence Surveyor visualizes sequences in parallel, displaying data using variable color, position, and aggregation encodings. We demonstrate how perceptual science can inform the design of visualization techniques that remain visually manageable at scale and how signal processing concepts can inform aggregation schemes that highlight global trends, outliers, and overall data distributions as the problem scales. These techniques allow us to visualize alignments with over 100 whole bacterial-sized genomes.  相似文献   

18.
Visualization and artificial intelligence (AI) are well-applied approaches to data analysis. On one hand, visualization can facilitate humans in data understanding through intuitive visual representation and interactive exploration. On the other hand, AI is able to learn from data and implement bulky tasks for humans. In complex data analysis scenarios, like epidemic traceability and city planning, humans need to understand large-scale data and make decisions, which requires complementing the strengths of both visualization and AI. Existing studies have introduced AI-assisted visualization as AI4VIS and visualization-assisted AI as VIS4AI. However, how can AI and visualization complement each other and be integrated into data analysis processes are still missing. In this paper, we define three integration levels of visualization and AI. The highest integration level is described as the framework of VIS+AI, which allows AI to learn human intelligence from interactions and communicate with humans through visual interfaces. We also summarize future directions of VIS+AI to inspire related studies.  相似文献   

19.
Software visualization and visual editing are important and practical techniques to improve the development of complex software systems. A challenge when applying the two technologies is how to realize the correspondence, a bidirectional relationship, between the data and its visual representation correctly. Although many tools and frameworks have been developed to support the construction of visual tools, it is still compli- cated and error-prone to realize the bidirectional relationship. In this paper, we propose a model-driven and bidirectional-transformation-based framework for data visualization and visual editing. Our approach mainly focuses on 1) how to define and manage graphical symbols in the model form and 2) how to specify and im- plement the bidirectional relationship based on the technique of bidirectional model transformation. Then, a prototype tool and four case studies are presented to evaluate the feasibility of our work.  相似文献   

20.
We present a new model for creating composite visualizations of multidimensional data sets using simple visual representations such as point charts, scatterplots and parallel coordinates as components. Each visual representation is contained in a tile, and the tiles are arranged in a mosaic of views using a space‐filling slice‐and‐dice layout. Tiles can be created, resized, split or merged using a versatile set of interaction techniques, and the visual representation of individual tiles can also be dynamically changed to another representation. Because each tile is self‐contained and independent, it can be implemented in any programming language, on any platform and using any visual representation. We also propose a formalism for expressing visualization mosaics. A Web‐based implementation called MosaicJS supporting multidimensional visual exploration showcases the versatility of the concept and illustrates how it can be used to integrate visualization components provided by different toolkits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号