首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study rapid discharge sintering (RDS) and furnace sintering of nickel-diamond metal matrix composites (MMCs) is compared. Nickel-diamond powder composites (80-20% by weight respectively) were uniaxially pressed into 20 mm discs at compaction pressures of 100, 200 and 300 MPa. Discharge sintering was carried out using a microwave plasma formed with hydrogen and hydrogen/nitrogen as the discharge gases and tube furnace sintering carried out in a argon or a hydrogen/nitrogen (3:1) atmosphere. Discs pressed to 300 MPa were treated at both 850 and 1000 °C. The properties of the sintered nickel-diamond composites were characterized using density, approximate flexural strength, hardness, wear resistance, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The RDS samples sintered at 1000 °C achieved the maximum approximate disc flexural strength of 473 MPa within a 20 min treatment time compared with 6 h for furnace sintered samples. Samples sintered using the RDS technique exhibited increased hardness values and a finer nickel matrix over furnace sintered samples. Using the RDS technique it has been possible to process nickel-diamond MMCs without oxidation or graphitisation at temperatures above 900 °C. Minimal diamond destruction was observed during abrasive wear testing of the RDS samples compared with damage and pull-out observed for furnace sintering.  相似文献   

2.
Ultrafine/Nanocrystalline W-Cu composite powders with various copper contents (30, 40 and 50 wt.%) have been synthesized by sol-spray drying and a subsequent hydrogen reduction process. The powders were consolidated by direct sintering at temperatures between 1150 and 1260 °C for 90 min. The powder characteristics and sintering behavior, as well as thermal conductivity of the sintered alloys were investigated. The results show that the synthesized powders exist in ultrafine composite particles containing numerous nanosized particles, and the composition distributed very homogeneously. As the copper contents increase, the grain size of the powders decreases. The subsequent sintered parts show nearly full density with the relative density more than 99% at the temperature of 1250 °C. The sintered parts have very fine tungsten grains embedded in a bulk matrix. With increased copper contents, the tungsten grain size decreases and the microstructural homogeneity of the sintered alloys improves further. The thermal conductivity properties, while a little lower than that of the theoretical value, depend on the copper contents.  相似文献   

3.
The properties of W-15 wt.%Cu composites were investigated by preparing two distinct composites of micrometer and nanoscale structures. Micrometer composite was produced by mixing elemental W and Cu powders and nanometer one was synthesized through a mechanochemical reaction between WO3 and CuO powders. Subsequent compaction and sintering process was performed to ensure maximum possible densification at 1000-1200 °C temperatures. Finally, the behavior of produced samples including relative density, hardness, compressive strength, electrical conductivity, coefficient of thermal expansion (CTE) and room temperature corrosion resistance were examined. Among the composites, nano-structured sample sintered at 1200 °C exhibited better homogeneity, the highest relative density (94%) and mechanical properties. Furthermore, this composite showed superior electrical conductivity (31.58 IACS) and CTE (9.95384 × 10- 6) in comparison with micrometer type. This appropriate properties may be mainly attributed to liquid phase sintering with particle rearrangement which induced by higher capillary forces of finer structures.  相似文献   

4.
本文以碳纳米管(CNTs)和TiB2颗粒作为增强相,首先利用球磨、表面吸附和热压烧结相结合技术制备具有层叠结构的CNTs/Cu复合材料,改善了CNTs在铜基复合材料中易团聚问题。CNTs/Cu复合材料的致密度和导电率随CNTs含量增加而降低,抗拉强度和伸长率随CNTs含量增加先升高后降低,当含量为0.1 wt.%时综合性能最优,致密度、导电率和抗拉强度分别为97.57%、91.2 %IACS和252 MPa。而球磨后热压烧结的1 wt.% TiB2/Cu复合材料致密度、导电率和抗拉强度分别为97.61%、58.3 %IACS和436 MPa。在此基础上,将TiB2颗粒原位引入到具有层叠结构的CNTs/Cu复合材料,制备获得混杂增强(CNTs+TiB2)/Cu复合材料。相比单一CNTs(或TiB2)增强铜基复合材料,(CNTs+TiB2)/Cu复合材料的强度提升显著。其中,(0.1 wt.% CNTs+1 wt.% TiB2)/Cu复合材料的导电率和抗拉强度分别为56.4 %IACS和531 MPa,相比1 wt.% TiB2/Cu,其导电率仅降低3.3%,而抗拉强度则升高21.8%。这主要归因于片层间CNTs可起承担和传递载荷作用,同时片层间弥散分布的TiB2颗粒可以钉扎位错,两种强化机制共同作用使(CNTs+TiB2)/Cu复合材料的抗拉强度显著提升。  相似文献   

5.
Cu/WC-TiC-Co/GNs nano-composites were successfully prepared by the powder metallurgy technique. The predetermined weight percent value of WC-TiC-Co powder was mixed with 0.25, 0.5, 0.75, and 1 wt% of graphene nano-sheets for 3 h. by 1:2 powder to ball ratio. The mixed powders were coated with 90 wt% copper by the electro-less deposition technique. The composites were compacted at 900 MPa then sintered twice in a hydrogen atmosphere furnace once at 1000 °C and another at 1100 °C for 140 min. Sintering at 1000 °C proved to present the more suitable temperature. Both SEM and EDAX were used to investigate the microstructure and constituents of the sintered nano-composites. The relative density, hardness, electrical and thermal conductivity were studied. The microstructure refers to a good adhesion and homogeneous distribution of WC-TiC-Co and GNs in the copper metal matrix. The results showed that the relative density was increased up to 0.25 wt% GNs then decreased. In spite of the decreasing of the density after 0.25 wt% GNs, the hardness increased up to 1 wt% GNs. Because of the large surface area and the nano-size thickness of GNs, electrical and thermal conductivities got increased by its increasing up to 1 wt%.  相似文献   

6.
To fabricate electronic packaging shell of copper-matrix composite with characteristics of high thermal conductivity and low thermal expansion coefficient, semisolid forming technology, and powder metallurgy was combined. Conventional mechanical mixing of Cu and SiC could have insufficient wettability, and a new method of semisolid processing was introduced for billets preparation. The SiC/Cu composites were first prepared by PM, and then, semisolid reheating was performed for the successive semisolid forging. Composite billets with SiC 35% volume fraction were compacted and sintered pressurelessly, microstructure analysis showed that the composites prepared by PM had high density, and the combination between SiC particles and Cu-alloy was good. Semisolid reheating was the crucial factor in determining the microstructure and thixotropic property of the billet. An optimised reheating strategy was proposed: temperature 1,025 °C and holding time 5 min.  相似文献   

7.
This work describes the microstructure and fracture toughness of zirconia toughened alumina (ZTA) nanocomposite in which multi-wall carbon nanotubes (MWCNTs) and nanosized ZrO2 particles were used as reinforcement. The ZTA nanocomposites with additions of 0, 0.005, and 0.01 wt.% MWCNTs and 2 wt.% nanosized ZrO2 particles were pressureless sintered in an anti-oxidant sagger with graphite powder bed at 1520 °C during 1 h in air and then HIPed at 1475 °C in argon atmosphere 1 h at a pressure of 150 MPa. Relative densities ranging 94–98% were reached. In HIPed composites the hardness and fracture toughness values were increased up to ∼17% and ∼37%, respectively, compared to the “as sintered” composites free of carbon nanotubes. A combined fracture mode, crack deflection, pull-outs of a small amount of carbon nanotubes, and bridging effect were the mechanisms leading to the improvement in fracture toughness.  相似文献   

8.
In this study, effect of Mg alloying addition (2-8 wt.%) on corrosion behaviour of Al matrix composites, in 3.5 wt.% NaCl environment, has been investigated. Composites were produced by pressure infiltration technique at 750 °C and had a SiC particle (SiCp) volume fraction of ∼60%. Results were evaluated by using potentiodynamic polarisation measurements, immersion tests, SEM, EDS and XRD analysis. Compared to the pure Al matrix, mass loss of the composites decreased with increasing Mg content. Experimental results revealed that intermetallics as a result of reaction between Al-Mg alloy and SiC particle has beneficial effect on corrosion resistance of the composites due to interruption of the continuity of the matrix channels within the pressure infiltrated composites.  相似文献   

9.
Spark plasma sintering (SPS) technology was used to determine the appropriate conditions for SPS sintering of commercially pure magnesium as well as the magnesium alloy AZ31. It was found that the sintering temperatures of 585 °C and 552 °C were the most suitable sintering temperatures for the magnesium and the AZ31 alloy, respectively. Magnesium matrix and AZ31 alloy matrix composites reinforced with SiC particles were then successfully fabricated by the SPS method at sintering temperatures of 585 °C and 552 °C, respectively. A uniform distribution of SiC particles was observed along the boundary between matrix particles. The mechanical properties, i.e. hardness and tensile strength increased with increasing SiC content up to 10 wt%. However, when the SiC content was larger than 10 wt%, the tensile strength decreased due to the agglomeration of SiC particles. The agglomeration of SiC particles was found to lead to the degradation of the interfacial bonding strength between matrix and reinforcement.  相似文献   

10.
The sinterability of ZrC was enhanced by high-energy ball milling as well as introduction of graphite and SiC as sintering additives. Densification process and microstructure development were investigated for ZrC-based ceramics densified by pressureless sintering. As-received ZrC powder showed poor sinterability. After high-energy ball milling, ZrC powder can be sintered to 98.4% theoretical density at 2100 °C. The obtained ceramic had fine microstructure and fewer entrapped pores. Introduction of 2 wt.% graphite combined with high-energy ball milling lowered the densification temperature of ZrC. The relative density of obtained ceramic reached up to 95% at 1900 °C. Introduced SiC inhibited ZrC grain growth during sintering and consequently avoided the entrapped pores within the grains. The relative density of ZrC-SiC reached up to 96.7% at 2100 °C. ZrC-SiC composite formed an interesting intragranular structure and had high fracture strength at room temperature.  相似文献   

11.
Nanocrystalline samarium doped ceria electrolyte [Ce0.9Sm0.1O1.95] was synthesized by citrate gel combustion technique involving mixtures of cerium nitrate oxidizer (O) and citric acid fuel (F) taken in the ratio of O/F = 1. The as-combusted precursors were calcined at 700 °C/2 h to obtain fully crystalline ceria nano particles. It was further made into cylindrical pellets by compaction and sintered at 1200 °C with different soaking periods of 2, 4 and 6 h. The sintered ceria was characterized for the microstructures, electrical conductivity, thermal conductivity and thermal diffusivity properties. In addition, the combustion derived ceria powder was also analysed for the crystallinity, BET surface area, particle size and powder morphology. Sintered ceria samples attained nearly 98% of the theoretical density at 1200 °C/6 h. The sintered microstructures exhibit dense ceria grains of size less than 500 nm. The electrical conductivity measurements showed the conductivity value of the order of 10−2 S cm−1 at 600 °C with activation energy of 0.84 eV between the temperatures 100 and 650 °C for ceria samples sintered at 1200 °C for 6 h. The room temperature thermal diffusivity and thermal conductivity values were determined as 0.5 × 10−6 m2 s−1 and 1.2 W m−1 K−1, respectively.  相似文献   

12.
Production of bulk Al-TiB2 nanocomposite from mechanically alloyed powder was studied. Al-20 wt.% TiB2 metal matrix nanocomposite powder was obtained by mechanical alloying (MA) of pure Ti, B and Al powder mixture. A double step process was used to prevent the formation of undesirable phases like Al3Ti intermetallic compound, which has been described in our previous papers. The resultant powder was consolidated by spark plasma sintering (SPS) followed up by hot extrusion. The structural characteristics of powder particles and sintered samples were studied by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Hardness measurements were conducted on the cross section of powder particles and sintered sample and the tensile behavior of extruded samples was evaluated. The results showed that the prepared Al-20 wt.% TiB2 nanocomposite has good thermal stability against grain growth and particle coarsening. Extruded Al-20 wt.% TiB2 showed a hardness value of 180 VHN and yield and tensile strength of 480 and 540 MPa, respectively, which are much higher than those reported for similar composites made by other processes.  相似文献   

13.
The influence of silicon carbide particles (SiCp) addition on the corrosion behavior of Al-Cu alloy (2014) was evaluated in 3.5% NaCl solution at 30 °C using microstrucural and electrochemical measurements. Addition of 10 wt.% SiCp to the base alloy is found to increase its corrosion resistance considerably. Incorporation of SiCp beyond this proportion leads to an increase in corrosion rate of the synthesized composites. Addition of 25 wt.% SiCp to base alloy decreases corrosion resistances considerably. Microstructural studies reveal the agglomeration of SiC particles in the composites. This results an increase of corrosion reaction with the increase of SiC particles in the composites. EIS measurement indicates the occurrence of adsorption/diffusion phenomena at the interfaces of the composites that ultimately initiate the localized or pitting corrosion.  相似文献   

14.
W/SiC metal matrix composites were produced by gas tunnel type plasma spraying (GTPS) using a mixture of 12 wt.% SiC-88 wt.% W feedstock powder. This work aimed at the optimization of the plasma gun current for deposition of a W/SiC composite with fine microstructure on AISI 304 substrate. Characterization of deposits was performed in order to assess microstructure, micro-hardness, thermal diffusivity and thermal conductivity. WO3 was detected in the composite deposits, which indicated that the tungsten partially oxidized during plasma spraying. Also, the deposit composite was dense and nearly free of pores due to the little mismatch between the coefficient of thermal expansion (CTE) for W and SiC. Microhardness values gradually decreased as a function of input current due to the formation of WO3 and the decomposition of SiC particles in high temperature flame region. The thermal conductivity as high as ∼ 59 W/mK was obtained at gun current 80 A. It was found that both tungsten oxide and structure imperfections have a significant influence on the thermal conductivity and mechanical properties.  相似文献   

15.
Friction stir processing (FSP) was applied to modify the microstructure of sintered Al–SiC composites with particle concentrations ranging from 4 to 16 vol%. Two SiC particle sizes (490N and 800 grades) were examined. Following FSP, the hardness of the 4 and 8 vol% of 490N grade SiC composites increased from 130 HV and 145 HV to 171 HV and 177 HV respectively. The increase was accounted for by the severe deformation occurring during FSP which uniformly distributed the SiC particles. The composites containing 16 vol% SiC could not be fully consolidated using FSP, and contained residual pores and lack of consolidation which originated from the as-received sintered microstructure. The hardness correlated well with the mean inter-particle spacing for the SiC particles in the case of composites containing 4 and 8 vol% SiC.  相似文献   

16.
The influence of powder particle injection velocity on the microstructure of coatings consisting of an Al-Si matrix reinforced with SiC particles prepared by laser cladding from mixtures of powders of Al-12 wt.% Si alloy and SiC was investigated both experimentally and by modeling. At low injection velocities SiC particles react with the molten aluminum alloy. Only a small fraction of SiC remains in the microstructure, which contains large amounts of particles of the reaction products Al4SiC4 and Si dispersed in the α-Al + Si eutectic matrix. By contrast, at high injection velocities chemical reactions between SiC and molten aluminum are almost entirely suppressed and the resulting microstructure consists only of SiC particles dispersed in the matrix. To investigate whether this behavior could be explained by the different temperatures reached by the injected particles as they fly through the laser beam, a physical-mathematical model describing the interaction between the laser beam and the powder stream in the off-axis blown powder laser cladding process was developed and applied to calculate the temperature attained by the powder particles as a result of their interaction with an Nd:YAG laser beam (λ = 1.06 µm). At an injection velocity of 1 m/s the maximum temperature attained by SiC and Al-12Si particles is 3150 and 180 ºC, respectively. This result demonstrates that particle injection velocity is a major parameter affecting the microstructure of coatings produced by laser cladding, and must be carefully controlled.  相似文献   

17.
A comparative evaluation has been carried out on the microstructure of aluminum based SiC and Al2O3 particle reinforced composites produced by semi-solid direct squeeze forming of composite powder at temperatures of 635-645 °C. The study is focused on the distribution of the reinforcement and the intermetallic phases, the porosity content, the microstructure of the matrix phase, the interfacial state and mechanical properties. The particle size of the reinforcements, the time of the high-energy ball milling procedure for the fabrication of composite powder and the semi-solid forming temperature had a strong influence on the quality of sample in terms of distribution of reinforcement and interfacial interaction. Ball milling improves the interface formation between reinforcement and matrix and influences the remelting behaviour. Increasing ball milling time and decreasing semi-solid forming temperature with isothermal holding time resulted in relatively homogenous microstructures and in a reduced amount of interaction between SiC and metal matrix. Best results were obtained for 5 vol.% SiCp composites after 3 h ball milling, semi-solid formed at 635 °C and held for 10 min.  相似文献   

18.
The AZ91D Mg matrix composites reinforced by SiC particulate with the sizes of 11 μm, 21 μm and 47 μm were successfully fabricated respectively by vacuum-assisted pressure infiltration technology. Microstructures and particulate distributions were analyzed with scanning electron microscope (SEM), X-ray diffraction (XRD) and transmission electron microscope (TEM). The coefficient of thermal expansion (CTE) measurements was performed from 75 °C to 400 °C at a heating rate of 5 °C/min. The results show that the uniform distribution of SiC particulate in metal matrix and density over 98% in theoretical density of composites were fabricated. Only MgO phase was detected at the interface and no brittle phases of Al4C3 and Mg2Si were discovered. The desirable coefficients of thermal expansion of composites were achieved. The intensity of dislocation generation nearby SiC particulate increases significantly with the increasing of SiC particulate size. Therefore, this technology is a potential method to fabricate Mg matrix composites reinforced by SiC particulates with the desirable microstructures and CTE.  相似文献   

19.
The resistance to oxidation in ambient air at a temperature up to 1600 °C of two hot-pressed diborides matrix composites, both containing 19.5% v/o SiC and 3 v/o HfN (as sintering aid), was investigated. The diboride matrix was based on HfB2 or a ZrB2/HfB2 mixture (volume ratio ≈ 1). Both the materials were subjected to repeated heating-cooling cycles at 1600 °C, and a 20 h exposure at 1450 °C in flowing dry air. Modest weight gains and limited corrosion depths highlighted a rather good thermal stability. In accordance with the thermo-gravimetric test at 1450 °C, the oxidation kinetics for both the composites superbly fit a para-linear law. The introduction of the SiC particles provided tangible benefits for the resistance to oxidation. One of the oxidation products, a borosilicate glass, sealed pores and coated the exposed faces, greatly limiting the inward transport of oxygen towards the internal oxide/diboride interfaces.  相似文献   

20.
Rolling of wrought aluminium matrix composites with hard phase-reinforcements such as SiC, is interesting to produce sheets for engineering constructions due to their light weight combined with good strength and wear resistance. In this work, the hot rolling behaviour is studied for stir-cast composites with matrix of Al 6061 and Al 6082 alloys and fine SiCp particulates with size of 15 μm and 8 μm and volume fraction up to 30%. For composite casting, optimum casting procedures and materials pre-treatment has been applied for successful insertion of particles into the melt, better particles/matrix wetting and particles distribution, minimized SiC/Al reaction. From thermomechanical simulation, step rolling is defined to be suitable at a strain rate of 1 s−1 rate for each step, using intermediate heat treatment at 450 °C for a period of 10 s to 1 h. Generally, the quality of rolled product was improved with improving casting quality. Successive hot rolling resulted in decreasing void and the agglomeration clusters and hence enhanced mechanical properties are achieved. The flow behaviour under rolling of Al-particulate metal matrix composites, PMMCs, is analysed and the product is characterised for its mechanical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号