首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nanocrystalline ferrites of compositions Ni0.5+1.5xCu0.3Zn0.2Fe2−xO4 (0 ≤ x ≤ 0.5) have been synthesized by using oxalate based precursor method at very low temperature. The Ni-Cu-Zn ferrite powder particles were obtained at 450 °C and they exhibit a crystallite size of 16-24 nm. The lattice constants were found nearly equal in all these samples due to minute difference in the ionic radius between Ni2+ and Fe3+ ions. The thermal analysis has showed the ferrite phase formation at very low temperature 377 °C. The two main spectroscopic bands corresponding to lattice vibrations were observed in the wavelength range from 300 to 1000 cm−1. The IR bands at 570 cm−1 (v1) and 390 cm−1 (v2) were assigned to tetrahedral (A) and octahedral [B] groups. The spectroscopic bands shift with the increase of doping concentration. The magnetization was found to decrease with increasing doping concentration. The dielectric constant (?′) and dielectric loss tangent (tan δ) decreased with increase of frequency. The dielectric constant and dielectric loss obtained for the nanocrystalline ferrite samples appeared to be lower than that of the ferrites prepared by other synthesis techniques.  相似文献   

2.
MgGdxFe2−xO4 (x = 0.0, 0.05, 0.1 and 0.15) ferrites, with improved dc resistivity, initial permeability, saturation magnetization, and extremely low relative loss factor, have been synthesized by solid state reaction technique. The microstructures, electric, dielectric and magnetic properties have been investigated by means of X-ray diffraction, Keithley 2611 system, impedance analyzer and VSM respectively. The addition of Gadolinium in Mg ferrite has been shown to play a crucial role in enhancing the electric, dielectric and magnetic properties. The dc resistivity is increased by two orders of magnitude as compared to Mg ferrite. Saturation magnetization has been increased by two times and remnant magnetization has been increased by more than three times due to the doping of Gd3+ ions in Mg ferrite. The relative loss factor was found to have very low values and is of the order of 10−4-10−5 in the frequency range 0.1-30 MHz. The variations of electric, dielectric and magnetic properties of the samples have been studied as a function of frequency and Gd3+ ions concentration measured at room temperature. High resistivity and improved magnetic properties can be correlated with better compositional stoichiometry and the replacement of Fe3+ ions by Gd3+ ions. The mechanisms responsible to these results have been discussed in this paper.  相似文献   

3.
The crystallization process of bismuth substituted yttrium iron garnet (BixY3−xFe5O12; x = 0, 1, 2) powder prepared by the metal-organic decomposition method has been studied with various sintering temperatures. The pure garnet phase was observed for the x = 1 powder at 900 °C sintering temperature, whereas the x = 0, 2 powder showed secondary phases. The x = 0 powder showed a similar crystallization process to that of the solid state reaction method. For the x =1, 2 powders, it is proposed that the lowering of the crystallization temperature is due to the lowered stability of the intermediate phase. The infrared spectroscopy and magnetic properties were also investigated. The pure garnet phase showed three absorption bands located at 563, 598, 655 cm−1 that shifted to 555, 588, 639 cm−1 along with an increase of bismuth concentration. The maximum values of saturation and remanence magnetization and the minimum value of coercivity were observed for the x = 1 powder sintered at 900 °C, which were 20.8 emu/g, 2.67 emu/g, and 31.9 Oe, respectively.  相似文献   

4.
The influence of Zr substitution for Ti on the microwave dielectric properties and microstructures of the Mg(ZrxTi1−x)O3(MZxT) (0.01 ≤ x ≤ 0.3) ceramics was investigated. The quality factors of Mg(ZrxTi1−x)O3 ceramics with x = 0.01-0.05 were improved because the solid solution of a small amount of Zr4+ substitution in the B-site could increase density and grain size. An excess of Zr4+ resulted in the formation of a great deal of secondary phase that declined the microwave dielectric properties of MZxT ceramics. The temperature coefficient of resonant frequency (τf) of Mg(ZrxTi1−x)O3 ceramics slightly increased with increasing Zr content, and the variation in τf was attributed to the formation of secondary phases.  相似文献   

5.
Z-type hexaferrites doped with Nd3+, Ba3−xNdxCo2Fe24O41 (x = 0, 0.05, 0.10, 0.15, and 0.25), were prepared by solid-state reaction. The effect of the Nd3+ ions substitution for Ba2+ ions on the microstructure and electromagnetic properties of the samples was investigated. The results reveal that an important modification of microstructure, complex permeability, complex permittivity, and static magnetic properties can be obtained by introducing a relatively small amount of Nd3+ instead of Ba2+. SEM image shows that the grains of the ferrites doped with Nd3+ were smaller, more perfect and homogeneous than that of the pure ferrite. The real part (?′) of complex permittivity and imaginary part (?″) increase at first, and then decrease with increasing Nd content. At low frequency, the imaginary part μ″ of complex permeability decreases with Nd content and then increases when frequency is above 7.0 GHz. The magnetization (Ms) and the coercivity (Hc) are 79.38 emu g−1 and 36.94 Oe for Ba2.75Nd0.25Co2Fe24O41. The data of magnetism show that the ferrite doped with Nd3+ ions is a better soft magnetic material due to the higher magnetization and lower coercivity.  相似文献   

6.
Using spent alkaline Zn-Mn batteries as raw material, Mn-Zn soft magnetic ferrite nanoparticles are prepared by multi-step processes including acid leaching, chemical treatment of battery iron shells and citrate-nitrate precursor auto-combustion. Acid leaching and chemical treatment mechanisms are investigated. Dried gels thermal decomposition process, auto-combustion, phase composition, morphological and magnetic properties of as-prepared Mn-Zn ferrite nanoparticles are characterized by thermogravimetric and differential thermal analysis, X-ray powder diffraction, transmission electron microscopy and vibrating sample magnetometer. Synthesized Mn-Zn ferrite nanoparticles (Mn0.5Zn0.5Fe2O4) have pure ferrite phase, larger saturation magnetization (Ms = 60.62 emu g−1) and lower coercivity (Hc = 30 Oe) compared with the same composition ferrites prepared by other techniques due to better crystallinity. Mn-Zn ferrite nanoparticles synthesis method presents a viable alternative for alkaline Zn-Mn batteries recycling.  相似文献   

7.
The pyrochlore-type phases with the compositions of SmDy1−xMgxZr2O7−x/2 (0 ≤ x ≤ 0.20) have been prepared by pressureless-sintering method for the first time as possible solid electrolytes. The structure and electrical conductivity of SmDy1−xMgxZr2O7−x/2 ceramics have been studied by the X-ray diffraction (XRD), scanning electron microscopy (SEM) and impedance spectroscopy measurements. SmDy1−xMgxZr2O7−x/2 (x = 0, 0.05, 0.10) ceramics exhibit a single phase of pyrochlore-type structure, and SmDy1−xMgxZr2O7−x/2 (x = 0.15, 0.20) ceramics consist of pyrochlore phase and a small amount of the second phase magnesia. The total conductivity of SmDy1−xMgxZr2O7−x/2 ceramics obeys the Arrhenius relation, and the total conductivity of each composition increases with increasing temperature from 673 to 1173 K. SmDy1−xMgxZr2O7−x/2 ceramics are oxide-ion conductors in the oxygen partial pressure range of 1.0 × 10−4 to 1.0 atm at all test temperature levels. The highest total conductivity value is about 8 × 10−3 S cm−1 at 1173 K for SmDy1−xMgxZr2O7−x/2 ceramics.  相似文献   

8.
Nanoparticles of Co1−xZnxFe2−xCrxO4 (x = 0.0-0.5) ferrites were prepared by chemical co-precipitation technique using metal sulphates. The structural and magnetic properties were investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), and AC susceptibility measurements. X-ray diffraction patterns indicate that the samples possess single phase cubic spinel structure. The lattice constant initially increases for x ≤ 0.3 and thereafter for x > 0.3 it decreases with increasing x. The saturation magnetization (Ms), magneton number (nB) and coercivity (Hc) decreases with increasing Cr-Zn content x. Curie temperature deduced from AC susceptibility data decreases with increasing x.  相似文献   

9.
We have prepared BaCd2−xSrxFe16O27 (x = 0, 0.5, 1, 1.5 and 2.0) W-type hexagonal ferrites by standard ceramic method. In this work, the structural, dielectric and magnetic properties have been studied of the prepared samples. The XRD analysis of the samples reveals single phase behavior sintered at 1400 °C for 6 h. The saturation magnetization (Ms) shows increasing behavior with the increasing concentration of Sr2+. While the coercivity (Hc) decreases rapidly up to 409 G for x = 1.5 and then increases for (x > 1.5) due to the preference of Cd2+ for tetrahedral sites and the number of spin-down magnetic ions. The real and imaginary parts of the dielectric constant (?′,?″) and dielectric loss tangent (tan δ) are determined in the frequency range 0.1-107 Hz. It is observed that both the real and imaginary parts of the dielectric constant and tan δ decrease with the increasing concentration of Sr2+, which is due to the contribution of Cd2+ ions in addition to Fe3+ and Fe2+ ions to interfacial polarization.  相似文献   

10.
[Bi0.75Y1.05−xCa1.2+x](Fe4.4−xSnxV0.6)O12 (Snx:Bi-CVG) ferrite materials were prepared by conventional ceramic technique. The bulk density, microstructure and the magnetic properties of the obtained samples were analyzed. The results showed that moderate addition of Sn4+ in Bi-CVG could lower the sintering temperature and enhance the soft magnetic properties obviously. With the increase of Sn4+ content, the saturation magnetization first increased and then decreased, while the coercivity and the ferromagnetic resonance linewidth (ΔH) first sharply decreased and then slightly increased. Additionally, the specimen of [Bi0.75Y0.65Ca1.6](Fe4.0Sn0.4V0.6)O12 sintered at 1075 °C possessed the highest density and the optimum magnetic properties: RD (the relative density) = 98.49%, Hc = 152.3 A/m, 4πMs = 711.3 × 10−4 T, ΔH = 2.1 kA/m.  相似文献   

11.
Magnetic properties, phase evolution, and microstructure of directly quenched NdyFe97−yzTi3−xZrxBz (x = 0-3; y = 7-10; z = 14-19) bulk magnets of 0.9 mm in diameter have been investigated. Proper Zr substitution for Ti and appropriate Nd and B contents modify the magnetic phases constitution and refine the grain size from 200-250 nm to 50-100 nm. Consequently, the magnetic properties of the rods are enhanced remarkably from iHc = 6.2 kOe and (BH)max = 5.6 MGOe for Zr-free rods to iHc = 6.7-13.5 kOe and (BH)max = 6.7-8.2 MGOe for Zr-substituted NdyFe97−yzTi3−xZrxBz rods (x = 0.5-2; y = 8-10; z = 14-16). The optimum magnetic properties of Br = 6.6 kG, iHc = 9.6 kOe and (BH)max = 8.2 MGOe were achieved for Nd9.5Fe72.5Ti2.5Zr0.5B15 alloy.  相似文献   

12.
Nanocrystalline ferrite materials having the general formula Ni0.7Zn0.3Fe2−xAlxO4 (0.0 ≤ x ≤ 0.5) have been synthesized by citrate-gel auto combustion method and characterized using X-ray diffraction (XRD), energy dispersive X-ray (EDX), field emission scanning electron microscopy (FE-SEM), dc magnetization, dielectric and impedance spectroscopy measurements. XRD studies confirm that all the samples show single phase cubic spinel structure. The crystallite size of Ni0.7Zn0.3Fe2−xAlxO4 (0.0 ≤ x ≤ 0.5) nanoparticles calculated using the Debye-Scherrer formula was found in the range of 13-17 nm. The value of lattice parameter ‘a’ is found to decrease with increasing Al3+ content. EDX patterns confirm the compositional formation of the synthesized samples. FE-SEM micrographs show that all the samples have nano-crystalline behavior and particles show spherical shape. The variation of dielectric properties ?′,?″, and tan δ with frequency shows the dispersion behavior which is explained in the light of Maxwell-Wagner type of interfacial polarization in accordance with the Koop's phenomenological theory. The dc magnetization studies infer that magnetic moment of Ni0.7Zn0.3Fe2−xAlxO4 (0.0 ≤ x ≤ 0.5) nanoparticles was found to decrease with Al doping. Impedance spectroscopy techniques have been used to investigate the effect of grain and grain boundary on the electrical properties of the synthesized compounds.  相似文献   

13.
The Bi and Zn substitution effects on the sintering behaviors, magnetic and electric properties of hexagonal ferrites with a composition of 2(Ba1−xBixO)·2(ZnyCo0.8−yCu0.2O)·6(Fe2−x/3Znx/3O3) were investigated. The results showed that the addition of Bi and Zn can significantly promote Co2Y densification. The Y phase may be triggered to decompose into M and spinel phases at high sintering temperatures (above 1050 °C) for samples with excess Bi (x = 0.2) substitution, which resulted in densification and magnetic properties degradation. Co2Y ferrites with x = 0.1 and y = 0.4 sintered at 1050 °C show a relative density of 94%, a high initial permeability of 4.5, a quality factor (Q) of 50.  相似文献   

14.
A series of ferrite samples with the chemical formula Ni0.7Zn0.3CrxFe2−xO4 (x = 0.0-0.5) were prepared by a sol-gel auto-combustion method and annealed at 600 °C for 4 h. The resultant powders were investigated by various techniques, including X-ray diffractometry (XRD), vibrating sample magnetometry (VSM), and permeability studies. The prepared samples have a cubic spinel structure with no impurity phase. As the Cr3+ content x increases, bulk density and crystallite size decrease, whereas porosity increases. The saturation magnetization decreases linearly from 58.31 to 42.90 emu/g with increasing Cr3+ content. However, coercivity increases with increasing Cr3+ substitution. The magnetic moments calculated from Neel's molecular-field model are in agreement in the experiment results. The initial permeability (μi) decreases with increasing Cr3+ substitution. The decrease in initial permeability (μi) is attributed to decrease in magnetization on addition of Cr3+. The real part of the permeability decreases gradually with increasing frequency in accordance with Snoek's law. The Curie temperature decreases linearly with increasing Cr3+ content.  相似文献   

15.
Zinc doped nickel ferrite i.e., Ni1−xZnxFe2O4 (0 ≤ x ≤ 0.6) have been prepared by using sol-gel method. X-ray diffraction of these samples shows the presence of single-phase cubic spinel structure. The room temperature magnetic measurements showed that saturation magnetization (Ms) increases with the substitution of Zn2+ ions up to x = 0.4 and thereafter it begins to decrease, whereas magnetostriction (λ) value decreases with the addition of Zn2+ in the Ni-Zn ferrite. Dielectric permittivity (?′), dielectric loss tangent (tan δ) and AC conductivity (σAC) for all the prepared samples have been studied as a function of frequency and composition in the range from 0.05 Hz to 10 MHz at room temperature. It has been observed that initially ?′, tan δ and σAC decreases with the substitution of Zn2+ up to x = 0.4 and then increases with the further addition of Zn2+ ions. Variation in the slope parameter s with zinc contents indicates the presence of different type of conduction mechanism in different compositions. The dielectric loss curves exhibit relaxation peaks which shift with the addition of Zn contents. The results have been explained on the basis of space charge polarization according to Maxwell-Wagner's two-layer model and the hopping of charges between Fe2+ and Fe3+ as well as between Ni3+ and Ni2+ ions at the octahedral sites.  相似文献   

16.
Ba(Zr1−xCex)0.9Y0.1O2.95/NaCl (x = 0.1, 0.2 and 0.3) composite electrolyte materials were fabricated with ZnO as sintering aid. The effect of ZnO on the properties of Ba(Zr1−xCex)0.9Y0.1O2.95 matrix were investigated. The phase composition and microstructure of samples were characterized by XRD and SEM, respectively. The electrochemical performances were studied by three-probe conductivity measurement and AC impedance spectroscopy. XRD results showed that Ba(Zr1−xCex)0.9Y0.1O2.95 with 2 mol% of ZnO was perovskite structure. The relative density of this sample was above 95% when sintered at 1450 °C for 6 h. By adding 10 mol% of NaCl to Ba(Zr1−xCex)0.9Y0.1O2.95 with 2 mol% of ZnO that was sintered at 1400 °C for 6 h, the conductivity was increased. The electrical conductivity of 1.26 × 10−2 S/cm and activation energy of 0.23 eV were obtained when tested at 800 °C in wet hydrogen.  相似文献   

17.
The thermal conductivities of [(ZrO2)1−x(CeO2)x]0.92(Y2O3)0.08 (0 ? x ? 1) solid solutions are studied in this paper. The incorporation of ZrO2 and CeO2 in the solid solution decreases the thermal conductivity compared with their end members (YSZ and YDC). The thermal conductivities of the solid solutions show clearly different temperature dependences in the ZrO2-rich (0 ? x ? 0.5) region and in the CeO2-rich region (0.5 ? x ? 1). The composition and the temperature dependence of the thermal conductivities are discussed based on established phonon scattering theories. We have concluded that the composition dependence of the thermal conductivity of this system is mainly controlled by the mass difference between Zr4+ and Ce4+, while the thermal conductivity-temperature relationship is dominated by the randomness of the defect distribution.  相似文献   

18.
Aluminum doped Bismuth ferrite (BFO) nanopowders (grain size 13-20 nm) having composition Bi1−xAl2xFe1−xO3 (x = 0.00, 0.025, 0.05, 0.10, 0.15, 0.20, 0.25 and 0.30) were successfully synthesized by solution combustion method using citric acid as fuel at a temperature as low as 200 °C. As-prepared samples were examined by powder XRD for phase identification and crystallite size determination. The d.c. resistivity as a function of temperature was measured by standard two probe setup which exhibits clear metal to insulator transition for all samples. FTIR analysis was carried out to identify the chemical bonds present in the system. The optical band gap was calculated from the UV-vis absorbance spectra using classical Tauc relation which was found to vary from 2.78 eV to 2.93 eV for different Al3+ concentrations. The activation energies calculated from the slopes of ln(ρ) versus 103/T plots are in the range 0.54-0.73 eV.  相似文献   

19.
The kinetics and mechanism of pure zirconium corrosion in an iron-bearing borosilicate glass melt are investigated from 1230 to 1418 °C. The influence of immersion time and temperature on the corrosion layer morphologies is discussed. The corrosion mechanism is a multi-step process and is described using the Zr-Si-O-B phase diagram. Boron and silicon species contained in the melt are reduced at the zirconium contact and ZrSisBb intermetallic compounds are formed while the Zr substrate is oxidized into ZrOx. When the local melt fO2 value induces the Fe0 precipitation, complex ZrSisBbFef compounds are formed. The last step consists in the oxidation of ZrOx into ZrO2.  相似文献   

20.
NixMn0.8−xMg0.2Fe2O4; 0.1 ≤ x ≤ 0.35 was prepared by standard ceramic technique at sintering temperature 1200 °C using heating / cooling rate 4 °C/min. The samples were irradiated by Nd YAG pulsed laser with energy of the pulse 250 mJ. X-ray diffractograms reveal cubic spinel structure for all the samples before and after laser irradiation. After laser irradiation, better crystallinity was obtained in a form of an increase in the calculated crystal size. This increase was discussed as due to the change in the valence of some ions like Fe3+, Ni2+ and Mn2+. The conductivity of all the investigated samples decreases after laser irradiation and becomes temperature independent for a wider range than that before irradiation. This was ascribed to electron rearrangement after laser irradiation. Accordingly, these ferrites are recommended to be useful in electronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号