首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In this study, we developed a simple approach for the controllable growth of whitlockite(WH) on a β-tricalcium phosphate surface and investigated its cell viability via CCK-8, its live-dead staining and its alkaline phosphatase activity. Herein, WH with controllable morphologies was prepared by regulating the hydrothermal reaction conditions. The results of scanning electron microscopy, X-ray diffraction and Xray photoelectron spectroscopy indicated that pure hexagonal plates of WH were prepared successfully.In vitro cell experiments showed that WH possessed excellent biocompatibility and effectively promoted the adhesion and proliferation of mouse bone mesenchymal stem cells. The osteogenesis of the WH was also enhanced. The obtained WH was expected to be utilized for promising applications as implantable block materials for bone repair.  相似文献   

2.
Calcium silicate (CaSiO3) bioceramics and polyesters have complementary qualities as potential bone substituted materials. In this study, sintered CaSiO3 bioceramics were prepared and coated with poly(lactic-co-glycolic acid) (PLGA), and the influences of the PLGA coating on the degradation, hydrophilicity, bioactivity, and biocompatibility of CaSiO3 ceramics were investigated. The results showed that the degradation rate was reduced, while hydrophilicity was decreased with the increase of the polymer coating. In addition, the polymer coating resulted in a decrease of the alkaline pH value during the degradation of the ceramics, which indicated an increase of the cell biocompatibility, confirmed by the attachment and proliferation of rMSCs on the surface of the polymer-coated ceramics. Furthermore, the apatite-forming ability of the PLGA-coated CaSiO3 bioceramics was maintained. This study suggested that the coating with PLGA might be a useful method to improve the integrative properties of CaSiO3 bioceramics for applications in bone regeneration and bone tissue engineering.  相似文献   

3.
Biocompatibility is a pre-requisite for all biomaterials used for medical application. During the last two decades significant advances have been made in the development of novel materials and selection and use of these materials has been directly dependent upon their biocompatibility. Several materials containing calcium or titanium cations demonstrate biocompatibility and are routinely used in various forms within the human body. Due to its position in the periodic table, scandium in the form of its oxide scandia (Sc2O3) was studied as the first stage of a wider exploration of the biocompatibility of ceramics. A commercial human osteoblast-like cell line (HOS TE 85) was used to study the biocompatibility of both sintered and abraded scandia surfaces. Scanning electron microscopy was used to examine cell adhesion, the MTT assay was used to measure cell metabolic function and the alamarBlue for the assessment of proliferation. Although the results are only preliminary findings, qualitative observations showed that both sintered and abraded surfaces favoured cell adhesion to the same extent. Quantitatively, a significant increase in cell proliferation was observed on Sc2O3 compared to Thermanox, tissue culture control. Furthermore, Sc2O3 has been shown to be non-toxic, able to be maintain cell viability and support cell growth and proliferation.  相似文献   

4.
Pseudowollastonite (CaSiO3) coatings on titanium alloy substrates were prepared by laser ablation. The in vitro bioactivity of the coatings was examined for its biomedical applicability which was evaluated by immersion in human parotid saliva. The pseudowollastonite-coatings were soaked for various periods and characterized by SEM-EDS, XRD, FTIR, and TEM analysis, and the results indicated that the carbonated hydroxyapatite (CHA) was formed on the surface of the coatings within 1 day. In addition, cell attachment test showed that the pseudowollastonite-coatings supported the mesenchymal stem cells adhesion and spreading, and the cells established close contacts with the ceramics after 1 day of culture. These findings indicate that the pseudowollastonite-coatings possesses good bioactivity, biocompatibility and could be of interest in specific periodontal applications for bone restorative purposes.  相似文献   

5.
Piezoelectric materials that generate electrical signals in response to mechanical strain can be used in tissue engineering to stimulate cell proliferation.Poly (vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)),a piezoelectric polymer,is widely used in biomaterial applications.We hypothesized that incorporation of zinc oxide (ZnO) nanoparticles into the P(VDF-TrFE) matrix could promote adhesion,migration,and proliferation of cells,as well as blood vessel formation (angiogenesis).In this study,we fabricated and comprehensively characterized a novel electrospun P(VDF-TrFE)/ZnO nanocomposite tissue engineering scaffold.We analyzed the morphological features of the polymeric matrix by scanning electron microscopy,and utilized Fourier transform infrared spectroscopy,X-ray diffraction,and differential scanning calorimetry to examine changes in the crystalline phases of the copolymer due to addition of the nanoparticles.We detected no or minimal adverse effects of the biomaterials with regard to blood compatibility in vitro,biocompatibility,and cytotoxicity,indicating that P(VDF-TrFE)/ZnO nanocomposite scaffolds are suitable for tissue engineering applications.Interestingly,human mesenchymal stem cells (hMSCs) and human umbilical vein endothelial cells cultured on the nanocomposite scaffolds exhibited higher cell viability,adhesion,and proliferation compared to cells cultured on tissue culture plates or neat P(VDF-TrFE) scaffolds.Nanocomposite scaffolds implanted into rats with or without hMSCs did not elicit immunological responses,as assessed by macroscopic analysis and histology.Importantly,nanocomposite scaffolds promoted angiogenesis,which was increased in scaffolds pre-seeded with hMSCs.Overall,our results highlight the potential of these novel P(VDF-TrFE)/ZnO nanocomposites for use in tissue engineering,due to their biocompatibility and ability to promote cell adhesion and angiogenesis.  相似文献   

6.
The aim of the study was the synthesis of polysulfone (PS)/graphene oxide (GO) composite membranes by phase inversion method as well as their structural, morphological, thermal and mechanical investigation. The performance of composite membranes in terms of distilled water and ethanol fluxes was investigated. The biological activity of mouse mesenchymal stem cells in contact with the new materials was measured. The successful incorporation of GO nanosheets within the PS matrix was confirmed by X-ray diffraction and transmission electron microscopy. Tensile tests indicated a key contribution of GO to the improvement of mechanical performances of PS. Ethanol and water fluxes decrease was remarked with GO addition and was assigned to the stabilization of composite membrane structure. Composite membranes cytotoxicity, cell viability and proliferation potential tests indicated excellent biocompatibility, enhancing cell proliferation and grouping for higher amount of GO within PS matrix.  相似文献   

7.
Highly bright and photostable cyanine dye-doped silica nanoparticles, IRIS Dots, are developed, which can efficiently label human mesenchymal stem cells (hMSCs). The application procedure used to label hMSCs is fast (2 h), the concentration of IRIS Dots for efficient labeling is low (20 μg mL(-1) ), and the labeled cells can be visualized by flow cytometry, confocal microscopy, and transmission electron microscopy. Labeled hMSCs are unaffected in their viability and proliferation, as well as stemness surface marker expression and differentiation capability into osteocytes. Moreover, this is the first report that shows nonfunctionalized IRIS Dots can discriminate between live and early-stage apoptotic stem cells (both mesenchymal and embryonic) through a distinct external cell surface distribution. On the basis of biocompatibility, efficient labeling, and apoptotic discrimination potential, it is suggested that IRIS Dots can serve as a promising stem cell tracking agent.  相似文献   

8.
Nanostructured biomaterials have been investigated for achieving desirable tissue-material interactions in medical implants. Ultrananocrystalline diamond (UNCD) and nanocrystalline diamond (NCD) coatings are the two most studied classes of synthetic diamond coatings; these materials are grown using chemical vapor deposition and are classified based on their nanostructure, grain size, and sp3 content. UNCD and NCD are mechanically robust, chemically inert, biocompatible, and wear resistant, making them ideal implant coatings. UNCD and NCD have been recently investigated for ophthalmic, cardiovascular, dental, and orthopaedic device applications. The aim of this study was (a) to evaluate the in vitro biocompatibility of UNCD and NCD coatings and (b) to determine if variations in surface topography and sp3 content affect cellular response. Diamond coatings with various nanoscale topographies (grain sizes 5–400?nm) were deposited on silicon substrates using microwave plasma chemical vapor deposition. Scanning electron microscopy and atomic force microscopy revealed uniform coatings with different scales of surface topography; Raman spectroscopy confirmed the presence of carbon bonding typical of diamond coatings. Cell viability, proliferation, and morphology responses of human bone marrow-derived mesenchymal stem cells (hBMSCs) to UNCD and NCD surfaces were evaluated. The hBMSCs on UNCD and NCD coatings exhibited similar cell viability, proliferation, and morphology as those on the control material, tissue culture polystyrene. No significant differences in cellular response were observed on UNCD and NCD coatings with different nanoscale topographies. Our data shows that both UNCD and NCD coatings demonstrate in vitro biocompatibility irrespective of surface topography.  相似文献   

9.
This work describes the evaluation of pure α-Tricalcium Phosphate (TCP) and silica containing TCP ceramics in the system Dicalcium Silicate–Tricalcium Phosphate (C2S–TCP) as a potential substrate for bone tissue engineering. The ceramics were soaked in dynamic simulated body fluid (SBF) for 2 weeks and characterized by SEM-WDS, XRD, and TEM analysis, and the results indicated that a carbonated hydroxyapatite (CHA) was formed on the surface of the ceramics. In addition, cell attachment assay showed that the ceramics supported the adult mesenchymal stem cells of human origin (hMSCs-A) adhesion and spreading, and the cells established close contacts with the ceramics after 24 h of culture. Also, cellular assays have shown a greater ability of hMSCs-A to express markers of the osteoblast phenotype (ALP, Col I, OC) in the C2S doped α-TCP ceramics, indicating osteoblastic differentiation as a result of the increased concentration of silicon in solid solution in α-TCP. These findings indicate that the C2S doped α-TCP ceramics possess good bioactivity, and biocompatibility, and might be promising for bone implant material.  相似文献   

10.
Soft tissue complications are clinically relevant problems after osteosynthesis of fractures. The goal is to develop a method for reduction of fibroblast adhesion and proliferation on titanium implant surfaces by plasma polymerisation of the organo-silicon monomer hexamethyldisiloxane (HMDSO). HMDSO was deposited under continuous wave conditions in excess oxygen (ppHMDSO surface) and selected samples were further modified with an additional oxygen plasma (ppHMDSO + O2 surface). Surface characterization was performed by scanning electron microscopy, profilometry, water contact angle measurements, infrared reflection absorption spectroscopy and X-ray photoelectron spectroscopy. In our experimental setup the mechanical properties, roughness and topography of the titanium were preserved, while surface chemistry was drastically changed. Fibroblast proliferation was assessed by alamarBlue assay, cell morphology by confocal microscopy visualization of eGFP-transducted fibroblasts, and cell viability by Annexine V/propidium iodide assay. Both modified surfaces, non-activated hydrophobic ppHMDSO and activated hydrophilic ppHMDSO + O2 were able to dramatically reduce fibroblast colonization and proliferation compared to standard titanium. However, this effect was more strongly pronounced on the hydrophobic ppHMDSO surface, which caused reduced cell adhesion and prevented proliferation of fibroblasts. The results demonstrate that plasma modifications of titanium using HMDSO are valuable candidates for future developments in anti-adhesive and anti-proliferative coatings for titanium fracture implants.  相似文献   

11.
Nano-hydroxyapatite(n-HA)/chitosan(CS) composite membranes were prepared by solvent casting and evaporation methods for the function of guided bone regeneration (GBR). The effect of n-HA content and solvent evaporation temperature on the properties of the composite membranes was studied. The n-HA/CS membranes were analyzed by scanning electron microscopy, Fourier transformed infrared spectroscopy, X-ray diffraction, swelling measurement, mechanical test, cell culture and MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenylte-2H-tetrazolium bromide) assay. The results show that the surface roughness and micropores of the composite membranes increase with the rise of n-HA content, suitable for adhesion, crawl and growth of cells. The hydroxyapatite holds nano size and distributes uniformly in the composite membranes. Chemical bond interaction exists between Ca ions and –OH groups of n-HA and –NH2 or –OH groups of CS. The n-HA content and solvent evaporation temperature have obvious influence on the swelling ratio, tensile strength and elongation rate of the composite membranes. Cell culture and MTT assays show that n-HA and its content can affect the proliferation of cells. The n-HA/CS composite membranes have no negative effect on the cell morphology, viability and proliferation and possess good biocompatibility. This study makes the n-HA/CS composite membrane be a prospective biodegradable GBR membrane for future applications.  相似文献   

12.
In this work, the potential of Sr-hardystonite (Sr2ZnSi2O7) ceramics for biomedical use was first detected. First, pure Sr2ZnSi2O7 powders were successfully synthesized by sol-gel method, and then Sr2ZnSi2O7 ceramics were prepared by sintering the powder compacts. The mechanical test showed that the bending strength and Young's modulus of Sr2ZnSi2O7 ceramics could reach 82 MPa and 44 GPa, respectively, which were close to the values for human cortical bone. Degradation test in Tris-HCl buffer solution showed that Sr2ZnSi2O7 ceramics had a low degradation rate with less than 3% weight loss after soaking for 28 days. Furthermore, the in vitro biocompatibility of the ceramics was evaluated by rabbit bone marrow stem cells (rBMSCs) adhesion and proliferation assay. The results showed that the ceramics supported the cells adhesion and proliferation. Taken together, Sr2ZnSi2O7 might be a potential candidate for preparation of bone implants.  相似文献   

13.
Willemite (Zn2SiO4) ceramics were prepared by sintering the willemite green compacts. The effects of sintering temperature on the linear shrinkage, porosity and mechanical strength of the ceramics were examined. With the sintering temperature increased, the linear shrinkage of the ceramics increased and the porosity decreased. When sintered at 1,300°C, willemite ceramics showed mechanical properties of the same order of magnitude as values for human cortical bone, as measured by bending strength (91.2 ± 4.2 MPa) and Young’s modulus (37.5 ± 1.5 GPa). In addition, the adhesion and proliferation of rabbit bone marrow stromal cells (BMSCs) on willemite ceramics was investigated. The results showed that the ceramics supported cell adhesion and stimulated the proliferation. All these findings suggest that willemite ceramics possess suitable mechanical properties and favorable biocompatibility and might be a promising biomaterial for bone implant applications.  相似文献   

14.
The objective of the current in‐vitro study was to evaluate the biocompatibility of a new type of CAD/CAM scaffold for bone tissue engineering by using human cells. Porous lightweight titanium scaffolds and Bio‐Oss® scaffolds as well as their eluates were used for incubation with human osteoblasts, fibroblasts and osteosarcoma cells. The cell viability was assessed by using fluorescein diazo‐acetate propidium iodide staining. Cell proliferation and metabolism was examined by using MTT‐, WST‐Test and BrdU‐ELISA tests. Scanning electron microscope was used for investigation of the cell adhesion behaviour. The number of devitalised cells in all treatment groups did not significantly deviate from the control group. According to MTT and WST results, the number of metabolically active cells was decreased by the eluates of both test groups with a more pronounced impact of the eluate from Bio‐Oss®. The proliferation of the cells was inhibited by the addition of the eluates. Both scaffolds showed a partial surface coverage after 1 week and an extensive to complete coverage after 3 weeks. The CAD/CAM titanium scaffolds showed favourable biocompatibility compared to Bio‐Oss® scaffolds in vitro. The opportunity of a defect‐specific design and rapid prototyping by selective laser melting are relevant advantages in the field of bone tissue engineering and regenerative medicine.Inspec keywords: calcium compounds, scanning electron microscopy, adhesion, titanium, CAD/CAM, tissue engineering, bone, biomedical materials, cellular biophysics, biomechanics, laser materials processing, meltingOther keywords: bone tissue engineering, human cells, porous lightweight titanium scaffolds, human osteoblasts, osteosarcoma cells, cell viability, fluorescein diazo‐acetate propidium iodide staining, cell proliferation, MTT tests, WST‐Test, BrdU‐ELISA tests, cell adhesion, devitalised cells, metabolically active cells, biocompatibility, selective laser melting, CAD‐CAM scaffolds, cell metabolism, scanning electron microscopy, Ti  相似文献   

15.
Chondroitin sulphate is a sulphated glycosaminoglycan biopolymer composed over 100 individual sugars. Chondroitin sulphate nanoparticles (NPs) loaded with catechin were prepared by an ionic gelation method using AlCl3 and optimised for polymer and cross‐linking agent concentration, curing time and stirring speed. Zeta potential, particle size, loading efficiency, and release efficiency over 24 h (RE24 %) were evaluated. The surface morphology of NPs was investigated by scanning electron microscopy and their thermal behaviour by differential scanning calorimetric. Antioxidant effect of NPs was determined by chelating activity of iron ions. The cell viability of mesenchymal stem cells was determined by 3‐[4, 5‐dimethylthiazol‐2‐yl]‐2, 5‐diphenyl tetrazolium bromide assay and the calcification of osteoblasts was studied by Alizarin red staining. The optimised NPs showed particle size of 176 nm, zeta potential of −20.8 mV, loading efficiency of 93.3% and RE24 % of 80.6%. The chatechin loaded chondroitin sulphate NPs showed 70‐fold more antioxidant activity, 3‐fold proliferation effect and higher calcium precipitation in osteoblasts than free catechin.Inspec keywords: nanoparticles, encapsulation, biomedical materials, particle size, nanofabrication, nanomedicine, electrokinetic effects, cellular biophysics, polymer blends, molecular biophysics, molecular configurations, biochemistry, curing, surface morphology, scanning electron microscopy, differential scanning calorimetry, dyes, precipitationOther keywords: in vitro evaluation, cross‐linked chondroitin sulphate nanoparticles, aluminium ions, nanoparticles, green tea flavonoids, sulphated glycosaminoglycan biopolymer, sugars, catechin, ionic gelation method, cross‐linking agent concentration, curing time, size 176 nm, time 24 h, calcium precipitation, 3‐fold proliferation effect, antioxidant activity, chatechin loaded chondroitin sulphate NPs, Alizarin red staining, osteoblasts, calcification, 3‐[4,5‐dimethylthiazol‐2‐yl]‐2,5‐diphenyl tetrazolium bromide assay, mesenchymal stem cells, cell viability, chelating activity, differential scanning calorimetry, thermal behaviour, scanning electron microscopy, surface morphology, release efficiency, loading efficiency, particle size, zeta potential, stirring speed  相似文献   

16.
Chitosan (Chi) and poly (styrene sulfonate) (PSS) were employed to surface modify titanium thin film via electrostatic self-assembly (ESA) technique in order to improve its biocompatibility. The surface chemistry, wettability and surface topography of the coated films with different number of deposited layers were investigated by using X-ray photoelectron spectroscopy (XPS), water contact angle measurement and atomic force microscopy (AFM), respectively. The results indicated that a full surface coverage for the outmost layer was achieved at least after deposition of five layers, i.e., PEI/(PSS/Chi)2 on the titanium films. The formed multi-layered structure of PEI(PSS/Chi) x (x ≥ 2) on the titanium film was stable in air at room temperature and in phosphate buffered solution (PBS) for at least 3 weeks. Cell proliferation, cell viability, DNA synthesis as well as differentiation function (alkaline phosphatase) of osteoblasts on chitosan-modified titanium film (PEI/(PSS/Chi)6) and control sample were investigated, respectively. Osteoblasts cultured on chitosan-modified titanium film displayed a higher proliferation tendency than that of control (p < 0.01). Cell viability, alkaline phosphatase as well as DNA synthesis measurements indicated that osteoblasts on chitosan-modified titanium films were greater (p < 0.01) than those for the control, respectively. These results suggest that surface modification of titanium film was successfully achieved via deposition of PEI/(PSS/Chi) x layers, which is useful to enhance the biocompatibility of the titanium film.  相似文献   

17.
Here, we are reporting the glowing combustion synthesis of Na2CaSiO4 powders for the first time at low temperature. L-alanine was used as reductant, and nitrates of sodium and calcium were used as oxidants. Phase evolution and formation was studied using X-ray diffraction (XRD), Fourier transform infrared (FTIR), Thermo gravimetric analysis-Differential thermal analysis (TGA–DTA) techniques. Powder morphology and particle size distribution were characterized using scanning electron microscopy (SEM), dynamic light scattering (DLS) techniques. Results confirms the formation of single phasic, microcrystalline sodium calcium silicate (Na2CaSiO4 phase) in cubic crystal system. Evaluation of hemolysis and (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) (MTT) tests suggest that Na2CaSiO4 powders exhibit negative response in in vitro conditions.  相似文献   

18.
Synthesis and characteristics of monticellite bioactive ceramic   总被引:1,自引:0,他引:1  
Mono-phase ceramics of monticellite (CaMgSiO4) were successfully synthesized by sintering sol–gel-derived monticellite powder compacts at 1,480 °C for 6 h. The mechanical properties and the coefficient of thermal expansion (CTE) of the monticellite ceramics were tested. In addition, the bioactivity in vitro of the monticellite ceramics was evaluated by investigating their bone-like apatite-formation ability in simulated body fluid (SBF), and the biocompatibility in vitro was detected by osteoblast adhesion and proliferation assay. The results showed that the bending strength, fracture toughness and Young’s modulus of the monticellite ceramics were about 159.7 MPa, 1.63 MPa m1/2 and 51 GPa, respectively. The CTE was 10.76 × 10−6 °C−1 and close to that of Ti-6Al-4V alloy (10.03 × 10−6 °C−1). Furthermore, the monticellite ceramics possessed bone-like apatite-formation ability in SBF and could release soluble ionic products to significantly stimulate cell growth and proliferation. In addition, osteoblasts adhered and spread well on the monticellite ceramics, which indicated good bioactivity and biocompatibility.  相似文献   

19.
The present work developed a biomaterial (HA/SBA-16) based on the growth of calcium phosphate (HA) particles within an organized silica structure (SBA-16) to evaluate its application as a drug delivery system. The samples were charged with ciprofloxacin as a model drug and in vitro release assays were carried out. The samples were characterized by elemental analysis (CHN), Fourier transform infrared spectroscopy, nitrogen adsorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), small angle X-ray scattering (SAXS) and X-ray diffraction. The results obtained by TEM, SEM and SAXS reveal a well-defined cubic arrangement of a uniform spherical mesoporous structure, an intrinsic characteristic of these materials, which indicated that SBA-16 and HA/SBA-16 could potentially encapsulate bioactive molecules by means of ordered mesopores. It was found that both surface interaction and pore volume affect the rate and amount of ciprofloxacin released from the mesoporous materials. In vitro assays were performed to evaluate the adhesion, viability, and growth behavior of human adipose tissue-derived stem cells (hADSC) on SBA-16 and HA/SBA-16 nanocomposites to verify their potential as a scaffold for application in bone–tissue engineering using MTT assay and alkaline phosphatase activity tests. The results showed that the materials are promising systems for bone repair, providing a good environment for the adhesion and proliferation of rat mesenchymal stem cells and hADSC in vitro.  相似文献   

20.
In this study, natural lecithin was incorporated into cholesterol-poly(ε-caprolactone) (Chol-PCL) by solution blending in order to modify the performance of the hydrophobic and bio-inert PCL. The fibrous Chol-PCL/lecithin membranes were fabricated by electrospinning, and the surface morphology and properties were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, static water contact angle, and mechanical tensile testing. The blood compatibility of the scaffolds was evaluated by in vitro hemolysis assay. The cytocompatibility of the scaffolds was investigated by cell adhesion and proliferation using bone-marrow mesenchymal stem cells (MSCs). Subcutaneous implantation was also performed to evaluate the in vivo inflammatory reaction. The tubular tissue-engineered vascular graft (TEVG) was further constructed by rolling cell sheet comprising fibrous membrane and MSCs. Furthermore, endothelial cells (ECs) were seeded onto the lumen of the graft with the aim to form vascular endothelium. The preliminary results indicate that electrospun Chol-PCL/lecithin scaffolds show improved hemocompatibility and cytocompatibility compared with neat Chol-PCL, and combining the Chol-PCL/lecithin fibrous scaffold with MSCs and ECs with well controlled distribution is a promising strategy for constructing TEVGs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号