首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
压电驱动器的开闭环迭代学习控制   总被引:1,自引:1,他引:0  
由于开闭环迭代学习控制方法能在加快收敛速度的情况下降低跟踪误差,本文利用该控制方法来提高压电驱动器(PZT)的高频轨迹跟踪精度。首先,提出了离散时间下的开环P型结合闭环PI型的迭代学习律,并且给出了基于该学习律的收敛性条件。然后,设计了用于PZT系统的离散开闭环迭代学习控制器。最后,针对50Hz单频和25Hz+50Hz复频三角波轨迹进行了跟踪控制实验。实验结果表明:所提出的迭代学习控制器对上述2种轨迹的最大跟踪误差分别为10.6nm和12.5nm,相对于PID控制器,分别降低了96.25%和95.62%。结果显示:提出的控制方法易于实现,无需准确的PZT迟滞和系统模型就可以获得很高的跟踪精度,能有效地满足高频和复频轨迹跟踪的精度要求。  相似文献   

2.
为了克服音圈电机电磁驱动柔顺微定位平台在大行程范围内存在的低阻尼谐振和动力学特性差异等问题,利用综合数据驱动频域逆迭代前馈补偿和含相位超前校正PI反馈控制的复合闭环频域逆迭代学习控制方法对其进行高速高精控制。首先,搭建了音圈电机驱动双平行四边形柔性机构微定位系统,并针对不同工作点位进行了动力学模型辨识。然后,为提高系统相对稳定性,设计了含相位超前校正环节的PI反馈控制器。同时,利用输入输出数据对系统频响函数进行在线逆估计并进行前馈补偿,来进一步消除谐振的影响。最后,利用所提出的控制方法进行了跟踪实验并与其它方法进行了对比。实验结果表明,提出的控制方法对三角波期望轨迹的最大跟踪误差为0.175%,相比于PID控制、相位超前PI控制、传递函数逆模型前馈控制,跟踪均方根误差分别减少了8.75,5.43和2.21倍,能够较好满足大行程微纳米定位跟踪精度高、速度快、抗干扰能力强的要求。  相似文献   

3.
为消除压电驱动柔性微定位平台高精控制对平台不确定动力学模型的依赖性,提出了一种数据驱动无模型迭代前馈补偿和自适应陷波滤波结合的控制方法来提高平台的跟踪性能。首先,建立了数据驱动无模型迭代前馈控制器,提高系统对噪声和其他干扰的鲁棒性,同时,证明了在无模型迭代前馈作用下,连续参考输入跟踪误差的有界性和闭环系统的稳定性;其次,构建了自适应陷波滤波器来消除平台谐振的影响,对误差信号进行快速傅里叶变换,并设计谐振频率在线提取算法,实现对陷波滤波器参数的在线实时整定,来进一步提升轨迹跟踪精度;最后,利用所设计的无模型迭代前馈控制器和自适应陷波滤波器对压电微动台进行轨迹跟踪实验。实验结果表明:在跟踪三角波信号时,与单独比例-积分(Proportional Integral,PI)控制和结合自适应陷波滤波器的PI控制相比较,最大跟踪误差分别减小78.25%和70.83%,能够有效提升平台的稳定性和跟踪精度。  相似文献   

4.
为了解决传统滑模控制高性能与系统抖振之间的矛盾,提高基于永磁同步电机驱动的航空光电平台系统的可靠性和指向精度,本文提出了一种新型滑模控制器趋近律,该趋近律可以有效削弱系统抖振并达到更好的跟踪效果。在此基础上,为提高扰动观测器的带宽以提升观测的准确性,将扩张状态观测器引入到光电稳定平台伺服系统中以观测系统的总和扰动,并将观测到的总和扰动补偿进滑模控制器,以更好地抑制系统抖振并提高系统抵抗外扰的能力。实验结果表明,本文提出的滑模控制器结合扩张状态观测器的方法明显优于传统的PI+DOB的控制方法。在匀速跟踪实验中,系统的位置指向误差的RMS值仅为0.005 7°,完全满足航空光电稳定平台的需求,约是经典PI+DOB控制方法精度的3倍;在正弦波跟踪实验中,本文提出的方法很大程度减小了速度跟踪的相位滞后,位置指向误差仅为PI+DOB方法的1/6;在三角波跟踪实验中,位置指向误差RMS值约为PI+DOB的1/3。  相似文献   

5.
提出了在交流伺服控制系统中,采用带速度和加速度前馈的复合前馈控制器与模糊PI D控制器构成的复合模糊控制器,可以显著提高控制系统的精度,大大降低跟踪误差。实验结果表明,这是一种切实可行的控制方法。  相似文献   

6.
提出了逆Bouc-Wen前馈控制与反馈控制相结合的复合控制算法,用于改善压电陶瓷驱动器对目标轨迹的跟踪性能。建立了压电陶瓷驱动器的Bouc-Wen迟滞动力学模型,并用粒子群算法(PSO)对该模型的参数进行识别。基于Bouc-Wen迟滞模型,提出了逆Bouc-Wen前馈补偿控制。最后,为消除迟滞模型的不确定性,引入比例积分(PI)反馈控制,并与前馈补偿控制构成复合控制算法。建立了基于dSPACE实时系统的压电陶瓷驱动实验平台,迟滞实验结果表明:压电陶瓷的迟滞误差量几乎为0,线性度高达96.5%;目标轨迹跟踪实验结果表明:复合控制算法的最大跟踪误差为0.180 5μm,均方根(RMS-Root mean square)跟踪误差为0.055 4μm,跟踪精度达到了10-8 m。相比于开环控制、前馈控制及PI反馈控制,提出的复合控制算法能够基本消除压电陶瓷的迟滞非线性,同时具有很好的轨迹跟踪性能。  相似文献   

7.
为解决直线伺服固有时滞特性对轨迹跟踪性能的影响,以典型的前馈加反馈二自由度控制结构为基础,分析直线伺服时滞特性对其轨迹跟踪精度的影响。在此基础上设计了前馈环节上的时滞控制器,之后针对时滞控制器位于前馈通道时作为一个超前环节控制上无法实现的问题,将时滞参数分为两部分,分别调节理想轨迹指令按照整数倍伺服周期延时及前馈控制信号滤波延时以达到时滞补偿的目的,引入牛顿迭代寻优进行最优时滞参数辨识。仿真与试验结果表明,在前馈加反馈二自由度控制的基础上加入时滞控制器可以有效减小直线伺服系统的闭环位置跟踪误差,特别是显著减小非零加加速度段的闭环位置跟踪误差,提高轨迹跟踪性能。  相似文献   

8.
直线电机精密定位平台轨迹跟踪控制器设计   总被引:2,自引:1,他引:2  
为了实现直线电机精密定位平台的位置和速度的轨迹跟踪控制,本文基于内模控制(IMC)的基本原理,在直线电机精密定位平台参数辨识的基础上,设计了定位平台速度环的模型状态反馈(MSF)控制器和基于位置环PID和速度环MSF的级联控制器。将PID/MSF级联控制器与速度/加速度前馈控制(VFC/AFC)相结合,构成了PID/MSF+VFC/AFC的复合轨迹跟踪控制器。该复合轨迹跟踪控制器通过整定速度前馈的增益来改善位置环偏差控制的跟踪滞后现象和动态响应,增加控制系统的稳定性和伺服精度;通过整定加速度前馈的增益在不减小级联控制器位置环增益的前提下,减小速度前馈带来的超调量,提高轨迹跟踪精度。基于MATLAB/dSPACE实时仿真控制平台,实现了某直线电机平台的轨迹跟踪控制。仿真和实验结果表明,该轨迹跟踪控制器的轨迹跟踪精度为±0.028 mm,定位精度为±4 μm,满足直线电机精密定位平台轨迹跟踪控制的要求。  相似文献   

9.
针对传统Bouc-Wen模型不能反映压电陶瓷作动器迟滞的非对称特性而导致其补偿控制精度难以提高的问题,提出了一种改进Bouc-Wen模型,通过修改形状控制参数使其能够模拟压电陶瓷作动器的非对称迟滞曲线.利用粒子群优化算法辨识了所需的模型参数,进一步研究了基于模型的前馈补偿控制、前馈加PI反馈补偿控制对于实现高精度位移输出的效果;在开环前馈补偿控制实验中,采用改进Bouc-Wen模型比传统Bouc-Wen模型的控制误差可降低约42%;在前馈加PI反馈补偿控制实验中,采用改进Bouc-Wen模型比传统Bouc-Wen模型的控制误差可降低约20%.研究结果表明:在相同的控制方式下,采用改进Bouc-Wen模型能够得到比传统Bouc-Wen模型更高的轨迹跟踪精度;与单纯采用基于模型的前馈补偿控制相比,采用基于模型的前馈加PI反馈补偿控制可显著提高压电陶瓷作动器的位移输出精度.  相似文献   

10.
卢远  国凯  孙杰 《机械工程学报》2022,58(14):181-189
工业机器人关节刚度较低,在外负载干扰下加工精度较低,阻碍机器人在加工系统中的进一步推广和应用。为解决该问题,提出一种力前馈控制-位置反馈控制复合补偿方法,其中力前馈控制可超前补偿由外部负载力引起的位置偏差,位置反馈部分用于补偿机器人内部因素导致的位置偏差。利用六维力传感器和激光跟踪仪构建了轨迹误差在线补偿闭环控制系统,进行轨迹精度在线补偿试验,验证该方法的轨迹误差补偿效果。综合考虑机器人因内部参数和外部环境因素引起的误差,提高机器人的轨迹精度,能够实现机器人的精准控制。试验结果表明,该方法具有较强的鲁棒性,在外负载下依然可保持较高的轨迹跟踪精度,200 N冲击载荷下路径轨迹误差峰值为0.082 mm,稳态误差为0.047 mm,为复杂工况下高精度机器人加工奠定了基础。  相似文献   

11.
压电陶瓷微动台的复合控制   总被引:1,自引:1,他引:0  
压电陶瓷微动台的迟滞非线性严重影响其动态定位精度,为了解决这一问题,采用一种改进的PI模型对微动台的迟滞非线性进行了建模.为了提高传统PID算法对压电陶瓷微动台的动态定位性能,将改进的PI模型与传统PID算法组合构成前馈复合控制算法,并进行了微动台的慢速与快速动态定位实验.结果表明,对同频曲线定位时,前馈PID复合算法的最大误差为传统PID算法的40%左右,平均误差为传统算法的20%~30%左右;对多频曲线定位时,前馈PID复合算法的最大误差和平均误差为传统PID算法的33%左右.数据表明前馈PID复合算法的动态定位性能明显优于传统PID算法.  相似文献   

12.
Friction compensation is particularly important for motion trajectory tracking control of pneumatic cylinders at low speed movement. However, most of the existing model-based friction compensation schemes use simple classical models, which are not enough to address applications with high-accuracy position requirements. Furthermore, the friction force in the cylinder is time-varying, and there exist rather severe unmodelled dynamics and unknown disturbances in the pneumatic system. To deal with these problems effectively, an adaptive robust controller with LuGre model-based dynamic friction compensation is constructed. The proposed controller employs on-line recursive least squares estimation(RLSE) to reduce the extent of parametric uncertainties, and utilizes the sliding mode control method to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. In addition, in order to realize LuGre model-based friction compensation, the modified dual-observer structure for estimating immeasurable friction internal state is developed. Therefore, a prescribed motion tracking transient performance and final tracking accuracy can be guaranteed. Since the system model uncertainties are unmatched, the recursive backstepping design technology is applied. In order to solve the conflicts between the sliding mode control design and the adaptive control design, the projection mapping is used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Finally, the proposed controller is tested for tracking sinusoidal trajectories and smooth square trajectory under different loads and sudden disturbance. The testing results demonstrate that the achievable performance of the proposed controller is excellent and is much better than most other studies in literature. Especially when a 0.5 Hz sinusoidal trajectory is tracked, the maximum tracking error is 0.96 mm and the average tracking error is 0.45 mm. This paper constructs an adaptive robust controller  相似文献   

13.
动力学因素,如摩擦力和惯性力,在叠层实体成型加工中常影响激光机床的切割精度。提出的动力学补偿方法结合了闭环位置控制和计算力矩控制两者的优点。既可以避免对名义轨迹的偏差,又可以补偿动力学因素对精度的影响。在每个原动件控制中,用附加的速度前馈来实现动力学补偿。多层前馈型神经网络用来实现机构的逆动力学模型。用周期函数,有限项傅立叶级数,作为激励函数来获取训练样本。复杂的动力学参数辨识过程成为神经网络权值的监督学习过程。实验结果表明,本文提出的方法对提高激光切割的轨迹精度和切口角度精度是有效的。  相似文献   

14.
快速倾斜镜是星间激光通信终端精瞄系统的核心部件,其驱动装置为压电陶瓷执行器,而压电陶瓷具有迟滞特性,其严重影响了快速倾斜镜的定位精度,进而对星间通信链路的稳定性造成不利影响。为解决这一问题,本文设计了一种改进Prandtl-Ishlinskii(P-I)模型对压电陶瓷执行器进行建模。在此基础上,提出了压电陶瓷执行器前馈线性化方法,以对迟滞特性进行前馈逆补偿。接着,提出了一种结合改进的P-I模型与增量式PID算法的复合控制算法,并在DSP中实现了该复合控制算法。最后,在试验平台上对该算法进行了验证。结果显示:当分别对系统输入10Hz和100Hz减幅正弦、等幅正弦曲线时,模型误差在0.59%以内,在输入同频100Hz以下的减幅正弦曲线时,传统PID算法的最大误差为59.31μrad,而该复合算法的最大误差为14.22μrad。实验数据表明,本文复合控制方法的动态跟踪性能明显优于传统PID方法,改进Prandtl-Ishlinskii(P-I)模型可以精确描述压电陶瓷的迟滞特性。本文设计的复合控制方法满足实际应用对快速倾斜镜的要求。  相似文献   

15.
This paper presents an enhanced adaptive robust disturbance observer-based motion tracking control methodology. This control approach is established and investigated for a semi-automated hand-held ear surgical device for the treatment of Otitis Media with Effusion. The proposed control methodology is utilised for tracking a desired motion trajectory in the presence of unknown or uncertain system parameters, nonlinearities including hysteresis, and disturbances in the motion system. The stability of the control approach is analysed. The convergence of position and velocity tracking errors is proven theoretically. A precise tracking performance following desired motion trajectory is demonstrated in the experimental study.  相似文献   

16.
In this paper, a novel Takagi-Sugeno (T-S) fuzzy system based model is proposed for hysteresis in piezoelectric actuators. The antecedent and consequent structures of the fuzzy hysteresis model (FHM) can be, respectively, identified on-line through uniform partition approach and recursive least squares (RLS) algorithm. With respect to controller design, the inverse of FHM is used to develop a feedforward controller to cancel out the hysteresis effect. Then a hybrid controller is designed for high-performance tracking. It combines the feedforward controller with a proportional integral differential (PID) controller favourable for stabilization and disturbance compensation. To achieve nanometer-scale tracking precision, the enhanced adaptive hybrid controller is further developed. It uses real-time input and output data to update FHM, thus changing the feedforward controller to suit the on-site hysteresis character of the piezoelectric actuator. Finally, as to 3 cases of 50 Hz sinusoidal, multiple frequency sinusoidal and 50 Hz triangular trajectories tracking, experimental results demonstrate the efficiency of the proposed controllers. Especially, being only 0.35% of the maximum desired displacement, the maximum error of 50 Hz sinusoidal tracking is greatly reduced to 5.8 nm, which clearly shows the ultra-precise nanometer-scale tracking performance of the developed adaptive hybrid controller.  相似文献   

17.
提出一种基于径向基神经网络(Radial basis function, RBF)的力/位置混合自适应控制方法并用于机器人轨迹跟踪控制,解决机器人柔性末端执行器轨迹跟踪过程中柔性和摩擦力模型难以精确描述的问题。RBF神经网络是一种高效的前馈式神经网络,具有其他前向网络所不具有的非线性逼近性能和全局最优特性,并且网络结构简单,训练速度快。设计一种基于RBF神经网络非线性逼近能力来估计模型中的不确定参数的自适应控制器,给出控制器中神经网络权值更新规则,并证明所设计控制器输出力和位置误差的最终一致有界性。将该控制器应用于风管清扫机器人仿真试验,结果表明该自适应控制器能很好地用于柔性和摩擦力不确定条件下轨迹跟踪控制,与传统自适应控制方法相比具有更精确的跟踪特性和更强的鲁棒性。  相似文献   

18.
One of the major sources that affect measurement accuracy and limit the use of high motion speeds in coordinate measuring machines (CMM) is the position error. In fact, static and dynamic probe errors are more direct factors in measuring machine accuracy, but are not the subject of this research. However the accuracy of acquisition of component position errors using a CMM in motion is also of importance, hence the dynamics of a CMM need to be considered. Therefore, this research aims to model the dynamics of a horizontal arm CMM by considering drive flexibility at joints and evaluates the characteristics of the system for fine motion control purposes. Design of a precision tracking controller (PTC) to perform superior tracking for enhancing the measurement accuracy and the probing speed in providing less inspection time at high motion speeds is carried out. A dynamic model for the CMM is developed including drive flexibilities represented with lumped springs at the joints. Due to the non-collocated nature of the control scheme in the flexible CMM dynamics, a non-minimum phase system is observed in the proposed CMM model. Using the derived CMM model with joint flexibilities, tracking motion control simulations are conducted at different probing speeds for the cases where a PI controller and a feedback PTC are employed. A comparison of the PI controller with the feedback PTC is also performed. Results demonstrate that the effects of joint flexibilities on the contour error and probing speeds are significant and the PI controller is not capable of providing good accuracy during challenging tasks such as corner tracking. However, the simulation results indicated that by using the proposed feedback precision tracking controller, contour errors in corner tracking that are caused by joint flexibilities can be reduced effectively .  相似文献   

19.
为实现高速开关阀控气动位置伺服系统的精确控制,以4个高速开关阀控制气缸的结构作为研究对象,提出一种模糊自适应PID算法以提高其控制精度.介绍了系统的结构与工作原理,并在此基础上建立系统数学模型.针对常规PID控制器难以适应多工况位置跟踪的问题,利用模糊控制原理对PID控制器的参数进行在线调整,以满足系统控制过程中对于参...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号