首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
金兵 《煤矿安全》2019,(4):10-13
通过改进的煤样瓦斯解吸装置,精确测定了不同平衡压力下构造煤与原生煤的恒温瓦斯解吸量与解吸速度数据,分析了构造煤的瓦斯解吸特征。实验结果表明:构造煤的瓦斯解吸量具有明显的分段特征,其初期瓦斯解吸量更大,第1 min内瓦斯解吸量可达120 min总解吸量的31.55%~38.07%,远高于同条件原生煤的10.94%~14.24%;构造煤的初始解吸速度可达10.11~15.75 mL/(g·min),是同条件下原生煤的的1.72~2.32倍,构造煤的初期解吸特征主要由第1 min内的解吸特性控制。通过现场数据分析了钻屑瓦斯解吸指标K_1随构造煤平均厚度变化情况,两者呈线性关系且显著正相关,说明在构造煤发育区域煤与瓦斯突出危险性显著增加。  相似文献   

2.
《煤炭技术》2016,(11):168-170
利用自主研发的高压变温吸附解吸实验装置,进行了颗粒煤和原煤在不同吸附平衡压力下的瓦斯解吸实验,并对原煤和颗粒煤解吸特性差异进行对比分析。结果表明:在解吸的前60 min内,颗粒煤的瓦斯解吸量要比原煤的瓦斯解吸量大得多;颗粒煤瓦斯解吸速度始终大于同时段内原煤瓦斯解吸速度,但颗粒煤的瓦斯解吸速度衰减得更快,尤其是在解吸初期表现得更加明显。  相似文献   

3.
构造煤的瓦斯放散特征及孔隙结构微观解释   总被引:1,自引:0,他引:1       下载免费PDF全文
张慧杰  张浪  汪东  侯金玲 《煤炭学报》2018,43(12):3404-3410
采用恒温煤粒瓦斯放散试验方法,研究了构造煤和原生煤瓦斯放散过程的差异性,结果表明构造煤在瓦斯放散初始1 min的瓦斯解吸量是原生煤的2.15~4.06倍,构造煤趋近极限瓦斯解吸量所需时间不足原生煤所需时间的25%,原生煤的极限瓦斯解吸量略高于构造煤,构造煤与原生煤对典型瓦斯放散数学表达式的适用性存在很大不同。为解释试验结果,采用压汞法和低温氮吸附法对煤的孔隙结构进行测试,分析得到中孔及大孔分布是导致构造煤和原生煤瓦斯放散特征差异的主要因素,大分子结构等其他因素对瓦斯放散特征的影响有待于进一步研究。  相似文献   

4.
《煤炭技术》2021,40(9):126-130
为了研究构造煤的孔隙结构对瓦斯解吸特征的影响,选取了发耳煤矿和青龙煤矿的煤样,进行了压汞试验和瓦斯解吸试验,对构造煤和原生结构煤的孔隙结构及解吸特征进行了对比分析,结果表明:原生结构煤中的大孔和中孔的孔容含量约占总孔容的12.81%~12.19%,构造煤中的大孔和中孔的孔容含量约占总孔容的69.85%~82.15%,原生结构煤和构造煤的孔比表面积占比较高的都是微孔和小孔,表明构造煤结构变化主要体现在大孔和中孔的孔容占比增加;构造煤的初期瓦斯解吸速度和瓦斯解吸量明显大于原生结构煤,主要原因是构造煤的大孔和中孔的孔容含量增加,使瓦斯有了更多的渗流通道和储存空间,增加了瓦斯解吸速度。  相似文献   

5.
利用自主研制的煤样瓦斯吸附解吸装置,在恒温、相同初始压力条件下,对比研究了韩城矿区的块状原生结构煤和构造煤的瓦斯吸附规律,分析了其影响因素。试验结果显示:在平衡状态下,糜棱煤、碎裂煤和鳞片煤的单位质量瓦斯吸附量分别为原生结构煤的2.11、2.26、2.52倍。所有煤样的瓦斯吸附速率随时间的变化规律均呈单调递减的曲线形式,在吸附的初始阶段,构造煤的瓦斯吸附速率更快,尤其是在0~2 min时间段内这种差异最明显。构造煤在更短时间内达到吸附平衡,吸附效率更高。良好的致密性和原生裂隙不发育的特点决定了原生结构煤较强的瓦斯"封存"能力。良好的孔隙和后生裂隙的发育决定了构造煤在吸附性能方面要优于原生结构煤,而不同级别的孔隙发育比例和裂隙结构连通的差异性则是构造煤吸附性能差别的主因素。  相似文献   

6.
为了研究恒压条件下,变温作用对构造煤解吸时初期瓦斯解吸量的变化规律,以黔北某矿构造煤为研究对象,采用HCA型瓦斯吸附仪对构造煤在不同温度条件下进行解吸实验,绘制瓦斯解吸量随时间的变化曲线,分析变温作用对构造煤解吸初期瓦斯解吸量的影响规律。研究表明:构造煤的瓦斯解吸量随着温度的升高而增大,构造煤初期瓦斯解吸分3个阶段,分别为解吸初期1min内快速解吸、2~30min内缓慢解吸、30min以后稳定解吸;变温作用下构造煤解吸初期瓦斯解吸量和时间的关系符合Logistic模型,温度越高,其拟合效果越好。  相似文献   

7.
《煤矿安全》2021,52(4):20-24,30
为了准确预测掘进落煤瓦斯涌出量,搭建了大质量瓦斯解吸实验系统,进行了不同瓦斯压力条件下瓦斯解吸实验,研究了余吾煤业3#煤瓦斯解吸规律,建立了掘进落煤瓦斯涌出量预测模型,对不同瓦斯压力在不同掘进速度的落煤瓦斯涌出量进行了预测,查明了影响掘进落煤瓦斯涌出量的主要因素。研究结果表明:余吾煤业3#煤瓦斯解吸采用对数函数公式具有较高的拟合精度,拟合参数A和B受到煤层瓦斯压力或瓦斯含量的控制,影响掘进落煤瓦斯涌出量的主要因素为煤层原始瓦斯压力或瓦斯含量、割煤速度及落煤停留时间。  相似文献   

8.
《煤矿安全》2021,52(10):13-18
针对含瓦斯煤体在电场作用下表现出的放散初速度时间记忆效应特征,建立瓦斯放散测定实验系统,研究不同变质程度和破坏类型煤体静电场下的时间记忆效应。实验结果表明:静电场可以增大煤体瓦斯放散能力,随着加电电压的升高,瓦斯放散初速度呈先增大后减小变化趋势,并在某一特征电压下取到最大值,且构造煤相比原生结构煤特征电压较大;在连续加载8kV电压下,瓦斯放散初速度随加电时间增加呈上下波动的趋势,撤掉电场后,瓦斯放散初速度并未回落至未加电时的状态且放散速度值均高于初始状态,具有一定时间记忆效应,其中无烟煤经过电场作用后相较于未加电场在时间记忆效应内,瓦斯放散初速度增长在5%~9%之间,原生结构煤与构造煤变化量没有明显的区别;而贫煤原生结构煤在记忆效应内瓦斯放散初速度变化在5%~8%,构造煤则变化13%~18%;产生时间记忆效应的原因是一方面在静电场作用后煤体表面仍然呈现为静电状态,煤体表面电牵引力强于未加电,引起瓦斯吸附量的增大进而作用于瓦斯的放散;另一方面,在电场作用下煤体会产生激发极化电荷构成激发电场在失去电场后仍会继续影响瓦斯的放散,促进煤体瓦斯的解吸。  相似文献   

9.
井下直接法测定煤层瓦斯含量的准确性取决于损失瓦斯量的推算。实验室开展了煤样不同吸附平衡压力的瓦斯解吸实验,采用不同时间段的解吸数据推算了损失瓦斯量。结果表明:煤的累计瓦斯解吸量随时间呈单调递增关系,瓦斯解吸曲线符合幂函数关系;随着吸附平衡压力的增大,推算的损失瓦斯量增大;采用不同的解吸时间段拟合数据,推算出的损失瓦斯量差异明显;井下取样测定解吸瓦斯量时,应注意采集初期的(0~1 min)解吸瓦斯量,否则将引起较大的损失瓦斯量推算误差。  相似文献   

10.
《煤矿安全》2016,(2):9-13
在系统采集西南地区典型矿井构造煤样的基础上,通过等温吸附解吸实验,探讨了不同变质变形条件下构造煤瓦斯特性。中高变质作用阶段,变质程度对瓦斯吸附的影响作用大于变形强度,无论变形强弱,低变质煤的吸附量均低于中高变质煤;在低阶煤阶段,影响甲烷吸附量的主控因素则为构造煤变形强度。解吸较好的样品主要为高变质或高变形构造煤,瓦斯解吸量和解吸应力敏感性符合文特式。瓦斯解吸初期应力敏感性强弱为:高变质弱变形煤中变质煤及高变质强变形煤低变质煤。  相似文献   

11.
为探索水分对突出煤相似材料力学特性及瓦斯解吸性能的影响,选用粒径小于0.18 mm和0.18~0.25 mm、二者质量比为1∶1的煤粉作为骨料,水泥为黏结剂,水为溶解剂,在不同条件(成型压力、含水率)下压制突出煤相似材料。利用岩石三轴试验机、瓦斯放散初速度测定仪测定突出煤相似材料的单轴抗压强度及瓦斯放散初速度,获得了不同条件下突出煤相似材料单轴抗压强度和瓦斯放散初速度的变化规律。实验结果表明:当含水率为12%~20%时,配制出的突出煤相似材料单轴抗压强度随含水率的增大呈现先增大后减小的趋势;当含水率达到16%时,其单轴抗压强度达到最大值8.99 MPa;当含水率为20%时,成型压力越大,突出煤相似材料成型后密实度越大、脱模后的试件含水率越低,单轴抗压强度越大;突出煤相似材料的瓦斯放散初速度随含水率的增大而减小。  相似文献   

12.
构造煤瓦斯解吸规律研究   总被引:3,自引:1,他引:2  
通过建立实验系统,并模拟测试构造煤的瓦斯解吸过程,研究不同破坏程度构造软煤的瓦斯解吸规律,确定构造软煤在不同压力条件下的瓦斯解吸特性,为煤与瓦斯突出预测、煤层瓦斯压力和含量的预测以及估算采动落煤的瓦斯涌出提供了一定的理论依据。  相似文献   

13.
仿制构造煤的初始释放瓦斯膨胀能特性研究   总被引:1,自引:0,他引:1  
通过理论分析及采用一定破碎程度的非构造煤来仿制构造煤试验,研究仿制构造煤在初始释放瓦斯膨胀能方面的特征,并探讨其用于鉴定煤层突出危险性的可行性.试验结果表明:在瓦斯解吸的初始阶段,构造煤与仿制构造煤的瓦斯压力、瓦斯放散量、膨胀能均以负指数规律衰减,且在1000 ms之后就基本维持恒定值,并且膨胀能在超临界压力下的衰减速度小于亚临界状态下的衰减速度,衰减曲线在临界压力处产生拐点.相同破碎程度的仿制构造煤与构造煤的初始释放瓦斯膨胀能表现基本一致,这对解决煤层的突出危险性鉴定过程中,由于无法采集或不易采集到那些导致突出的构造煤煤样而采用非构造煤样做出判断失实的问题,有着十分重要的意义.  相似文献   

14.
突出煤-瓦斯在巷道内的运移规律   总被引:1,自引:0,他引:1       下载免费PDF全文
以煤与瓦斯突出过程中煤-瓦斯两相流为研究对象,利用自主研发的煤与瓦斯突出动力效应模拟试验装置进行了巷道中突出煤-瓦斯两相流试验研究,通过试验观察将煤颗粒的运动过程分为加速、平衡减速及沉降等运动阶段,并综合运用固体颗粒在气流中的悬浮运动机理和能量守恒定律,建立了一维情况下突出煤在巷道中的运移数学模型。通过模型计算分析得到,突出煤颗粒运移距离随初始气流速度的增大呈增大趋势,随颗粒粒径的分布规律由于其符合的流动状态不同而不同。  相似文献   

15.
粒度对软硬煤粒瓦斯解吸扩散差异性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
刘彦伟  刘明举 《煤炭学报》2015,40(3):579-587
基于气体在多孔介质的运移理论,采用物理模拟实验的方法,研究了软、硬煤粒瓦斯扩散速度、扩散系数的差异特征随粒径的变化规律;采用压汞法考察了软、硬煤粒孔隙结构特征的差异,分析了粒径对软硬煤瓦斯扩散行为差异性的影响机理。研究结果表明,当粒度大于等于硬煤的极限粒度时,软、硬煤瓦斯扩散初速度差值和扩散系数比值达到最大值,且基本趋于稳定;当粒度小于硬煤的极限粒度时,软、硬煤瓦斯扩散初速度差值和扩散系数比值随粒度的减小而减小;当粒径减小到一定程度——称该粒度为原始粒度,软、硬煤的瓦斯扩散速度和扩散系数几乎没有差别。软煤相对于硬煤和粒度减小,均使大中孔的孔容显著增大,即粒度减小会缩小软硬煤之间瓦斯解吸扩散通道的差别。软硬煤孔隙结构差异是导致瓦斯扩散速度和瓦斯扩散系数随粒径变化规律产生差别的本质原因。以上研究成果为钻屑瓦斯解吸指标、瓦斯放散初速度和煤层瓦斯含量等测定过程中粒度选择与结果修正提供理论参考。  相似文献   

16.
依托自行设计加工的含瓦斯煤瓦斯解吸规律实验系统,以煤的瓦斯解吸动力学规律为理论基础,采用模拟测试和理论分析相结合的方法,在等温等压条件下对不同粒度煤样的瓦斯解吸规律进行了模拟测定。通过对实验数据的拟合分析,得出粒度对煤的瓦斯解吸规律的影响,最后对粒度对煤的瓦斯解吸规律的影响进行了理论分析。  相似文献   

17.
张向阳  郭孟志  宋传杨  高留强 《煤矿安全》2012,43(8):177-179,185
基于井下解吸法直接测定煤层瓦斯含量过程中瓦斯损失量的重要性,采取全钻粉煤样在实验室不同压力条件下测定其解吸规律,然后运用3种损失量计算方法对瓦斯损失量计算结果进行分析比较,结果表明:槡t法更加符合钻屑初始阶段瓦斯解吸规律,采用该方法计算煤样瓦斯损失量误差较小。  相似文献   

18.
构造煤的瓦斯放散特征   总被引:6,自引:0,他引:6       下载免费PDF全文
富向  王魁军  杨天鸿 《煤炭学报》2008,33(7):775-779
通过对构造煤与非构造煤在微观结构上差异的分析,进行了构造煤瓦斯放散的微观与宏观数学模型理论研究.通过研制的自动化瓦斯放散速度测试仪器,在实验室测定了最小突出压力吸附下煤的瓦斯放散速度,并结合构造煤瓦斯放散的数学模型,得出构造煤的瓦斯放散特征.认为构造煤在应力降低或解除时,瓦斯运移规律用菲克定律描述比达西定律更合理;构造煤前60 s的瓦斯放散速度规律更符合文特式V=V1t-a,且第1秒时的瓦斯放散速度V1、衰减系数、Q0-60、Δp值均与非构造煤有很大的差异.  相似文献   

19.
高魁  刘泽功  刘健  康亚  黄凯峰 《煤矿安全》2012,43(8):174-176
通过对构造煤特征、构造应力场特征、地质构造带煤层瓦斯赋存规律和构造组合特征的综合论述,分析了地质构造物理环境对煤与瓦斯突出的影响。分析表明:构造煤分层的存在为煤与瓦斯突出的初始激发和持续发展创造了有利条件,地质构造破坏复杂程度、构造带煤层瓦斯赋存状态、构造应力场叠加和构造煤发育是影响突出发生的关键因素,增加了突出发生的危险性。提出了构造物理环境和采掘活动等扰动因素的综合作用控制地质构造带的煤与瓦斯突出。  相似文献   

20.
煤岩破断与瓦斯运移耦合作用机理的试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
彭守建  许江  尹光志  陆漆 《煤炭学报》2011,36(12):2024-2028
利用自主研制的含瓦斯煤热流固耦合三轴伺服渗流装置及煤与瓦斯突出模拟试验台,对煤岩破断与瓦斯运移耦合作用机理进行了试验分析。研究结果表明:瓦斯运移改变了煤体的力学性质,即降低了含瓦斯煤的强度,加速了其破断进程;在相同围压条件下,瓦斯压力越大,则含瓦斯煤三轴压缩破断程度越高,瓦斯运移通道越多,瓦斯渗流流量则越大;垂直地应力越大,即瓦斯运移越困难的条件下,煤与瓦斯突出强度越大,突出过程中温度下降幅度越大,表明垂直应力越大,煤体破断程度越高,其内部瓦斯解吸量越大,释放出来的能量越多。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号