共查询到18条相似文献,搜索用时 62 毫秒
1.
随着人们在生产、生活过程中对获取更加优质视觉信息的要求逐步提高,图像拼接技术成为数字图像处理领域中的热点与重点研究内容。先采用SIFT这一图像特征点检测与匹配的基础算法对图像进行特征点的粗匹配,再使用RANSAC算法对特征点进行提纯,得到最优特征点。仿真试验验证了该图像拼接技术可以提高图像的拼接效果,增强算法的鲁棒性。 相似文献
2.
为了解决在图像重叠度过低时,采用常用的SIFT图像匹配算法,造成图像拼接困难的问题,提出了一种基于ASIFT的低重叠度图像拼接方法.ASIFT图像匹配算法相较于SIFT图像匹配算法,在低重叠度条件下,能够检测出更丰富的匹配点,且具有更高的匹配精度.根据这一特性,该方法采用ASIFT图像匹配算法进行特征点检测与匹配,然后利用其结果进行图像拼接.实验结果表明,这种方法在图像重叠度很低的情况下,也能够取得良好的拼接结果. 相似文献
3.
一种基于特征点的稳健无缝图像拼接算法 总被引:2,自引:0,他引:2
针对传统的基于区域图像拼接方法中,计算量大、鲁棒性差以及不能很好地解决拼接后的接缝等问题,提出了一种稳健的基于特征点的无缝图像拼接算法.在SIFt(scale invariant feature transform)提取图像特征点并匹配的基础上,通过优化的随机采样一致性(random sample consensus)算法过滤匹配点,去除误匹配点,并用过滤后的匹配点求解两对应图像间单应性矩阵初值;然后利用L-M算法优化单应性矩阵对图像序列进行拼接;最后通过改进线性加权函数法进行图像融合,很好地解决了接缝问题,实现了图像拼接处的平滑过渡.实验表明,该方法对存在旋转、尺度缩放、视角以及光照变化的图像都具有良好的拼接效果,拼接精度可以达到亚像素级. 相似文献
4.
基于特征点的全自动无缝图像拼接方法 总被引:2,自引:0,他引:2
提出了一种基于特征点的全自动无缝图像拼接方法.该方法采用对于尺度具有鲁棒性的SIFT算法进行特征点的提取与匹配,并通过引导互匹配及投票过滤的方法提高特征点的匹配精确度,使用稳健的RANSAC算法求出图像间变换矩阵H的初值并使用LM非线性迭代算法精炼H,最终使用加权平滑算法完成了图像的无缝拼接.整个处理过程完全自动地实现了对一组图像的无缝拼接,克服了传统图像拼接方法在尺度和光照变化条件下的局限性.实验结果验证了方法的有效性. 相似文献
5.
6.
7.
8.
提出了一种基于特征点匹配的柱面全景图像拼接算法。首先将360°环绕拍摄的序列图像投影到柱面坐标系下;然后提取各图像的SIFT(Scale Invariant Feature Transform,尺度不变特征变换)特征点,通过特征点匹配完成两幅图像的配准;再根据配准结果计算出图像间的变换参数;最后采用加权平均的融合方法对两幅图像进行无缝拼接。实验表明,算法可以有效、快速地自动生成柱面全景图像。 相似文献
9.
10.
基于图像配准的栅格地图拼接方法 总被引:2,自引:0,他引:2
栅格地图拼接是多移动机器人协同创建环境地图中的一项关键技术. 本文提出一种图像配准意义下的栅格地图拼接方法. 该方法将栅格地图拼接问题视为图像配准问题, 建立相应的目标函数, 并给出局部收敛的迭代最近点算法求解该目标函数. 为获得最优的拼接结果, 该方法从待拼接的地图中提取局部不变特征, 并借助随机抽样一致性算法分析初始拼接参数, 以作为迭代最近点算法的初值. 最后, 提出了拼接参数已知时的栅格地图融合规则. 实验结果表明, 该方法能可靠地实现栅格地图拼接, 且具有精度高和速度快的优点. 相似文献
11.
12.
针对传统图像描述方法在图像对变化复杂时特征点配准精度低,且传统RANSAC算法计算稳定性差的问题,提出一种结合改进AKAZE特征与RANSAC算法的图像拼接算法.利用AKAZE算法构造非线性尺度空间提取图像特征点,采用卷积神经网络描述符生成128维特征向量描述图像特征点,通过精简特征点并在迭代中设定嵌套阈值改进RANS... 相似文献
13.
14.
针对尺度不变特征变换(SIFT)描述子仅利用特征点的局部邻域灰度信息而对图像内具有相似灰度分布的特征点易产生误匹配的问题,提出一种基于典型相关分析(CCA)的SIFT误匹配剔除方法.该方法首先利用SIFT算法进行匹配,得到初始匹配对; 然后根据典型相关成分的线性关系拟合直线,利用点到直线的距离剔除大部分误匹配点对; 对剩余的匹配点对,逐一分析其对典型相关成分的共线性的影响,剔除影响程度大的特征点对.实验结果表明,该方法能够在剔除误匹配的同时保留更多的正确匹配,提高了图像配准的精度. 相似文献
15.
为提高图像拼接时的配准速度和精度,针对鲁棒性模型估计问题,提出一种基于行列式点过程的改进RANSAC算法(Random Sample Consensus).该方法利用行列式点过程抽样法的全局负相关特性对匹配的特征点进行建模,实现抽样点的均匀化和分散化,剔除一些错误匹配点.用行列式点过程抽取的点集作为RANSAC算法的输入来求取变换矩阵.实验结果表明:该算法相对于传统的RANSAC算法,能够保持较高的精度和鲁棒性,减少传统RANSAC算法迭代次数,显著提升图像自动拼接的计算效率. 相似文献
16.
17.
拷贝—变换—移动篡改是一种操作简单但非常有效的数字图像篡改方法,现有检测框架无法检测。同时,在处理高分辨率篡改图像时,基于穷举搜索的现有算法框架会有计算量的困难。针对高分辨率彩色图像拷贝—变换—移动篡改提出了基于图像融合和尺度不变特征变换(SIFT)特征点匹配的检测算法。首先利用基于加权多尺度基本形的图像融合方法将降采样后的彩色图像信息融合至单幅灰度图像中,然后设计快速匹配方法得到融合图像中匹配的SIFT特征点作为种子点,最后根据图像处理规则和SIFT特征点的尺度和方向信息制定合适的生长策略逐步生长出被篡改区域。对手动制作的篡改图片和可疑新闻图片的实验结果表明,该算法对常用的润色操作和亮度调整以及JPEG有损压缩有较强的稳健性。 相似文献
18.
由于传统导航路径图像拼接法受尺寸大小、视觉角度以及光照变换等外界因素的影响,导致抖动图像匹配效果差,无法得到有效图像。因此,提出并设计一种基于抖动的导航路径图像无缝拼接方法。首先使用傅里叶变换方式对初始图像做变换处理,得到经过粗糙拼接的抖动结果,获取导航路径抖动后图像,再采用仿射映射与矩阵分解法对抖动图像做配准处理,修正该图像畸变,并得出两幅图像变换关系,然后使用ASIFT方式对其做特征点匹配计算,同时依据RANSAC原理去除匹配错误点,最后通过加权平滑方式对两幅抖动图像拼接线处理,实现抖动导航路径无缝拼接图像。通过仿真证明,所提方法计算简便、图像清晰、拼接效果具有较高实效性等优点。 相似文献