首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 788 毫秒
1.
This work compared the corrosion of typical Mg alloys (AZ91, ZE41 and Mg2Zn0.2Mn) and high purity (HP) Mg in Hank’s solution at room temperature and in 3% NaCl saturated with Mg(OH)2. Corrosion was characterised by the evolved hydrogen and the surfaces after immersion. Corrosion in Hank’s solution was weakly influenced by microstructure in contrast to corrosion in the 3% NaCl solution. This is attributed to the formation of a more protective surface film in Hank’s solution, causing extra resistance between the α-Mg matrix and the second phase. The alloys with substantial Zn contents had a shorter incubation period in Hank’s solution.  相似文献   

2.
Corrosion was evaluated for ultra-high-purity magnesium (Mg) immersed in 3.5% NaCl solution saturated with Mg(OH)2. The intrinsic corrosion rate measured with weight loss, PW = 0.25 ± 0.07 mm y−1, was slightly smaller than that for high-purity Mg. Some specimens had somewhat higher corrosion rates attributed to localised corrosion. The average corrosion rate measured from hydrogen evolution, PAH, was lower than that measured with weight loss, PW, attributed to dissolution of some hydrogen in the Mg specimen. The amount of dissolution under electrochemical control was a small amount of the total dissolution. A new hydride dissolution mechanism is suggested.  相似文献   

3.
Evaluation of the corrosion behavior of commercially pure magnesium (CP-Mg) and ZM21 Mg alloy immersed in Ringer’s solution for 92 h by electrochemical impedance spectroscopy (EIS) is addressed. The formation of a compact layer of well-developed rod-like aragonitic CaCO3 crystals and its subsequent thickening with increase in immersion time offers a higher corrosion protective ability for ZM21 Mg alloy. The formation of a mud-crack pattern and a large number of clusters of needle-like crystals offers a relatively lower corrosion resistance for CP-Mg. The study suggests that ZM21 Mg alloy is a promising candidate material for the development of degradable implants.  相似文献   

4.
Corrosion behaviour was characterised in salt spray and in 3.5% NaCl solution saturated with Mg(OH)2 of as-cast and solution heat-treated binary Mg–RE alloys. The corrosion rate in the immersion test for the solution heat-treated Mg–RE alloys was substantial, and was greater than that of high-purity Mg. These corrosion rates were probably caused by the particles in the microstructure and/or by Fe rich particles precipitated during the solution heat-treatment. The corrosion rate in the immersion tests for each as-cast Mg–RE alloy was greater than that of high-purity Mg, attributed to micro-galvanic acceleration caused by the second phase. Corrosion rates in salt spray had a general correlation with corrosion rates in the immersion tests, but there were differences. The values of apparent valence were always less than 2 consistent with Mg corrosion being only partly under electrochemical control.  相似文献   

5.
A first systematic investigation was carried out to understand the corrosion of common Mg alloys (Pure Mg, AZ31, AZ91, AM30, AM60, ZE41) exposed to interrupted salt spray. The corrosion rates were also evaluated for these alloys immersed in 3 wt.% NaCl by measuring hydrogen evolution and an attempt was made to estimate the corrosion rate using Tafel extrapolation of the cathodic branch of the polarisation curve. The corrosion of these alloys immersed in the 3 wt.% NaCl solution was controlled by the following factors: (i) the composition of the alpha-Mg matrix, (ii) the volume fraction of second phase and (iii) the electrochemical properties of the second phase. The Mg(OH)2 surface film on Mg alloys is probably formed by a precipitation reaction when the Mg2+ ion concentration at the corroding surface exceeds the solubility limit. Improvements are suggested to the interrupted salt spray testing; the ideal test cycle would be a salt spray of duration X min followed by a drying period of (120-X) min. Appropriate apparatus changes are suggested to achieve 20% RH rapidly within several minutes after the end of the salt spray and to maintain the RH at this level during the non-spray part of the cycle. The electrochemical measurements of the corrosion rate, based on the “corrosion current” at the free corrosion potential, did not agree with direct measurements evaluated from the evolved hydrogen, in agreement with other observations for Mg.  相似文献   

6.
Corrosion was studied in vitro in Nor’s solution (CO2 – bicarbonate buffered Hank’s solution) at 37 °C, and in vivo implanted in the lower back muscle of rats. Nor’s solution is a good model for HP Mg and WZ21, because (i) the pH is maintained by the same buffer as in blood and (ii) concentrations of corrosive chloride ions, and other inorganic constituents, are similar to those in blood. The higher in vitro corrosion rate of AZ91 was caused by micro-galvanic from second phases. The lower in vivo corrosion rate of AZ91 was tentatively attributed to suppression of micro-galvanic corrosion by tissue encapsulation.  相似文献   

7.
The influence of pH and chloride ion concentration on the corrosion behaviour of ZE41 was studied using immersion tests and electrochemical measurements. A shorter incubation period to the onset of corrosion; a more negative corrosion potential; and a higher corrosion rate correlated with a higher chloride ion concentration at each pH value and correlated with a lower pH value for each chloride ion concentration. This corrosion behaviour is consistent with the current understanding that the corrosion behaviour of magnesium alloys is governed by a partially protective surface film, with the corrosion reactions occurring predominantly at the breaks or imperfections of the partially protective film. The implication is that the fraction of film free surface increases with decreasing bulk pH and with increasing chloride ion concentration. This is consistent with the known tendency of chloride ions to cause film breakdown and the known instability of Mg(OH)2 in solutions with pH less than 10.5. The electrochemical measurements of the corrosion rate, based on the corrosion current at the free corrosion potential, did not agree with direct measurements evaluated from the evolved hydrogen, in agreement with other observations for Mg.  相似文献   

8.
Corrosion of binary Mg–X alloys (as-cast and solution heat-treated) was characterised by immersion tests in 3.5% NaCl solution saturated with Mg(OH)2, and by salt spray. Alloys with high corrosion rates in immersion tests also had high corrosion rates in salt spray. Corrosion rates of the solution heat-treated alloys did not meet the expectation that they should be equal to or lower than those of high-purity Mg. There was circumstantial evidence that the higher corrosion rates were caused by the particles in the microstructure; the second phases had been dissolved. The corrosion rate of all alloys was faster than that of high-purity Mg.  相似文献   

9.
Based on an analysis of galvanic corrosion research, the research reported herein was formulated to examine the measurement of polarisation curves for Mg to develop a methodology whereby reliable polarisation curves can be measured for Mg. Cathodic polarisation curves were measured for high purity Mg in 3.5% NaCl saturated with Mg(OH)2 using three specimen types: (i) mounted specimens, (ii) specimens hung by fishing line and (iii) plug-in specimens. Cathodic polarisation curves were evaluated to yield the corrosion current density icorr and the corresponding corrosion rate Pi, which was compared with the corrosion rate evaluated from hydrogen evolution measurements, PH, and the corrosion rate evaluated by weight loss measurements, PW. Mounted specimens produced values of corrosion rate, Pi, three times larger than values of corrosion rate, Pi, for plug-in specimens, attributed to crevice corrosion in the mounted specimens. Crevice corrosion in Mg is totally unexpected from prior research. The plug-in specimen configuration was designed to have no crevice and to allow simultaneous measurement of PH and Pi; Pi was consistently less than PH and indicated an apparent valence for Mg of 1.45 in support of the Mg corrosion mechanism involving the uni-positive Mg+ ion. The plug-in specimen has advantages for the study of Mg corrosion.  相似文献   

10.
In the present work the corrosion inhibitive role of Mg in Zn-Mg coatings is considered for different stages of corrosion. Corrosion product characterization was carried out using XRD, IRRAS, MEB-FEG-EDS on technical Zn-Mg coatings after various exposure times in a standardized cyclic corrosion test. The results are compared with artificial corrosion products obtained by chemical and electrochemical synthesis. The importance of the ageing and the role of the atmospheric CO2 on the nature and morphology of the corrosion products are discussed. The corrosion resistance of Zn-Mg alloy is correlated with the stabilization of simonkolleite against its transformation into smithsonite, hydrozincite, and zincite during ageing cycles in presence of CO2. The stabilization appears to be due to the preferential formation of magnesium carbonates. Thermodynamic modeling and titrometric analysis demonstrate that Mg2+ enhances simonkolleite during dry-wet cycling by (1) removing carbonate from the environment and thereby limiting of the transformation of simonkolleite into zincite, smithsonite, and hydrozincite and by (2) buffering the pH of the electrolyte around 10.2 due to the precipitation of Mg(OH)2 preventing the dissolution of zinc based corrosion products into soluble hydroxide complexes.  相似文献   

11.
为了研究淫羊藿苷含量对镁/超声微弧氧化/壳聚糖/淫羊藿苷(Mg/UMAO/CS/IC)涂层性能的影响,并提高纯镁的耐蚀性,采用电泳沉积(EPD)和UMAO技术在纯镁基体上制备Mg/UMAO/CS/IC涂层。采用扫描电子显微镜(SEM)、X射线衍射(XRD)、原子力显微镜(AFM)和傅立叶变换红外光谱(FTIR)对涂层的特征进行分析。对不同样品在模拟体液中进行了电化学阻抗和动电位极化的腐蚀行为研究。结果表明:当IC含量为0.4 g/L时CS/IC层具有较好的封孔效果。添加不同IC含量的Mg/UMAO/CS/IC涂层均由Mg、MgO、CS和Mg2SiO4组成。不同IC含量涂层的自腐蚀电流密度(icorr)比Mg至少都低一个数量级,能为镁基底提供更有效的保护。IC含量为0.4 g/L时Mg/UMAO/CS/IC涂层的耐蚀性更好,自腐蚀电流密度(1.667×10-6 A/cm2)最小。Mg/UMAO/CS/IC涂层可有效解决纯镁在临床骨内固定应用上降解过快的问题。  相似文献   

12.
This study studied corrosion in 0.1 M Na2SO4, 0.1 M NaCl, and 0.6 M NaCl, all saturated with Mg(OH)2, using weight loss, hydrogen evolution, and electrochemical measurements. Corrosion was similar in all cases. Nevertheless, the corrosion rates were alloy-dependent, were somewhat lower in 0.1 M Na2SO4 than in 0.1 M NaCl, and increased with NaCl concentration. The corrosion damage morphology was similar for all solutions; the extent correlated with the corrosion rate. The corrosion rates evaluated by the electrochemical methods were lower than those evaluated from hydrogen evolution, consistent with the Mg corrosion mechanism involving the unipositive Mg+ ion.  相似文献   

13.
Plasma electrolytic oxidation (PEO) was developed as a bond coat for air plasma sprayed (APS) nanostructure ZrO2 as top coat to enhance the corrosion resistance and antibacterial activity of Mg alloy. Corrosion behavior and antibacterial activities of coated and uncoated samples were assessed by electrochemical tests and agar diffusion method toward Escherichia coli (E. coli) bacterial pathogens, respectively. The lowest corrosion current density and the highest charge transfer resistance, phase angle and impedance modulus were observed for PEO/nano-ZrO2 coated sample compared with those of PEO coated and bare Mg alloys. Nano-ZrO2 top coat which has completely sealed PEO bond coat is able to considerably delay aggressive ions transportation towards Mg alloy surface and significantly enhances corrosion resistance of Mg alloy in simulated body fluid (SBF) solution. Moreover, higher antibacterial activity was also observed in PEO/nano-ZrO2 coating against bacterial strains than that of the PEO coated and bare Mg alloys. This observation was attributed to the presence of ZrO2 nanoparticles which decelerate E. coli growth as a result of E. coli membranes.  相似文献   

14.
The corrosion mechanism of Mg–Y alloys in 3.5% NaCl solution was investigated by electrochemical testing and SEM observation. The electrochemical results indicated that the corrosion potential of Mg–Y alloys in 3.5% NaCl solution increased with the increase of Y addition. The corrosion rate increased with the increase of Y addition because of the increase of Mg24Y5 intermetallic amounts. The corrosion gradually deteriorated with the increase of immersion time. The corrosion morphologies of the alloys were general corrosion for Mg–0.25Y and pitting corrosion for Mg–8Y and Mg–15Y, respectively. The main solid corrosion products were Mg(OH)2 and Mg2(OH)3C1.4H2O.  相似文献   

15.
Mg–2·2Nd–xSr–0·3Zr alloys (wt-%, x?=?0, 0·4, 0·7 and 2·0) were prepared by gravity casting to study the effects of Sr addition on the microstructure and corrosion resistance of Mg–Nd–Zr alloys in simulated body fluid (SBF). Phases were identified by X-ray diffraction, and microstructure was observed with optical microscopy and scanning electron microscopy. Corrosion resistance of the alloys was determined by evaluating mass loss and hydrogen evolution during immersion in SBF. Mg17Sr2 phase was formed, and the grain size decreased with additional Sr addition. For the grain refinement and more continuous second phase, which could improve the corrosion resistance, the alloy with 0·7 wt-%Sr showed the slowest corrosion rate, whereas the alloy with 2·0 wt-% showed the fastest corrosion rate due to the increased volume fraction of Mg17Sr2, which led to severe local microgalvanic corrosion.  相似文献   

16.
Magnesium alloy corrosion is often nonlinear. The corrosion rate accelerates to steady state after an initial period of low corrosion. Plug-in specimens permit simultaneous measurement of the corrosion rate using hydrogen evolution, P H, and Tafel extrapolation of cathodic polarization curves, P i. Moreover, weight loss allows independent verification. P H is consistently greater than P i. The data, for short exposure periods up to 10?days, are consistent with the unipositive Mg+ ion being a short-lived intermediate. Tafel extrapolation needs to be used with caution for estimation of Mg corrosion, as the measured corrosion rate can have a significant contribution from crevice corrosion. Furthermore, measurements made at short immersion times may not reflect the steady-state corrosion rate, and the corrosion reaction at the Mg surface may be decoupled from the electrochemical measurement.  相似文献   

17.
Stress corrosion cracking of the magnesium alloy Elektron 21 (ASTM–EV31A) and AZ91E was studied using constant load test in 0.1 M NaCl solution (saturated with Mg(OH)2), and slow strain rate test using glycerol, distilled water and Mg(OH)2 saturated, 0.01 M and 0.1 M NaCl solutions. Slow strain rate test indicated that EV31A was less susceptible to stress corrosion cracking than AZ91E. Under less intense loading of constant load, EV31A was found to be resistant to stress corrosion cracking. Fractography of EV31A specimens showed little evidence of hydrogen embrittlement. The superior resistance of EV31A is attributed to a more robust oxide/hydroxide layer.  相似文献   

18.
The atmospheric corrosion of line hot dip ZnMgAl coating was investigated at low and ambient concentration of CO2 as a function surface chloride concentration and temperature and compared to conventional hot dip galvanised (GI) and Galfan coatings. The corrosion of zinc coatings was enhanced in low CO2 conditions and ZnMgAl material was more affected than GI, and in the range of the Galfan coating. An obvious pH effect was underlined in low CO2 conditions. Layered double hydroxide (LDH) and simonkolleite were mainly formed on ZnMgAl coating in the absence of CO2 while hydroxycarbonate and simonkolleite were dominating in ambient air.  相似文献   

19.
Corrosion behaviour of AZ31B magnesium alloy in different concentrations of NaCl solution saturated with CO2 was studied by electrochemical techniques, Fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray. The corrosion rate increases with increasing NaCl concentration both in the presence and absence of CO2. The corrosion rate in NaCl solution saturated with CO2 is bigger than that in single NaCl solution. The inhibitive effect of CO2 is also observed with immersion time increased in NaCl solution saturated with CO2, showing that CO2 reduces the average corrosion rate due to the formation of insoluble products.  相似文献   

20.
On the stress corrosion cracking behaviour of recrystallized 8090-T81 Sheets The stress corrosion cracking behaviour of a recrystallized sheet of the Al-Li-Cu-Mg-Zr alloy 8090-T81 was studied performing accelerated tests under constant deformation, constant load, and slow strain rate conditions. The used electrolytes were an aqueous 3.5% NaCl solution, an aqueous solution of 2% NaCl + 0.5% Na2CrO4 at pH = 3, and synthetic seawater according to ASTM D1141. Alternately immersed in 3.5% NaCl solution according to ASTM G44 the investigated alloy was found to be susceptible to stress corrosion cracking was not promoted by continuous immersion in aerated 3.5% NaCl solution, 3.5% NaCl solution saturated with carbon dioxide, and in acid chromate inhibited 2% NaCl solution. Using the slow strain rate technique with continuously immersed flat tensile specimens stress corrosion cracking was only observed in synthetic seawater. Under specific environmental conditions hydrogen embrittlement can occur in the investigated material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号