首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the corrosion behaviour of annealed and not annealed AISI 444 ferritic stainless steel in tap water with and without addition of selected concentrations of chloride ions was investigated. Cyclic potentiodynamic macro (large area) and micro (small area) polarization measurements (CPP), salt spray test, SEM and EDS analysis were employed to evaluate the pitting and crevice corrosion susceptibility of annealed and not annealed AISI 444. The results obtained indicate that annealing does not improve the resistance to pitting and crevice corrosion. Moreover, micro CPP indicates local susceptibility to pitting on both annealed and not annealed materials; such susceptibility was not evident from macropolarization tests.  相似文献   

2.
采用高能研磨诱导的机械合金化方法制备了Fe-Cr-Mn基不锈钢合金粉末;对机械合金化粉末分别进行了退火和热压烧结,分析了退火过程中的相变规律,并对热压烧结获得的奥氏体不锈钢进行了组织和耐蚀性能研究.结果表明:机械合金化获得的不锈钢合金粉由亚稳态的纳米晶铁素体构成;退火/热压烧结处理后,铁素体逐渐转变为热力学上更加稳定的...  相似文献   

3.
The crevice corrosion behavior of X70 pipeline steel in NaHCO3 solution with varying Cl- concentration was investigated by potentiostatic polarization method in terms of the initiation and development of crevice corrosion. Results show that inside the crevice the X70 steel could suffer from localized corrosion in NaHCO3 solution by polarization potential-0.4 V. The acidification initiated firstly at the crevice mouth and then extended gradually to the bottom. The hydrogen evolution could be observed with the development of corrosion and acidification. The cathodic reaction changed from the reduction of the dissolved oxygen to the reduction of hydrogen ions. The presence of Cl- did not change the crevice corrosion mechanism. With the increase of Cl- concentration, however, the crevice corrosion rate increased. The corrosion region moved towards the crevice bottom gradually and then pitting corrosion occurred with the increasing polarization potential. The initiation of crevice corrosion was determined by the polarization potential. © 2016, Corrosion Science and Protection Technology. All rights reserved.  相似文献   

4.
The effects of applied torque on corrosion behaviour of 316L stainless steel with crevices were investigated using the cyclic potentiodynamic polarization method. Three kinds of crevices (316L-to-polytetrafluoroethylene, 316L-to-fluoroelastomeric and 316L-to-316L) were tested in artificial seawater at 50 °C. Corroded surface morphology was also investigated using scanning electron microscopy. Results indicate similar trends in crevice corrosion susceptibility with increasing applied torque. Among the three crevices, the 316L stainless steel specimen, coupled to the 316L stainless steel crevice former, is the most susceptible to crevice corrosion.  相似文献   

5.
合金元素铁对钛缝隙腐蚀性能的影响   总被引:1,自引:0,他引:1  
用浸泡腐蚀试验及电化学测试技术研究了合金元素铁对钛抗缝隙腐蚀性能的影响。试验结果表明,加入铁使缝隙腐蚀再钝化电位ER变负,缝隙腐蚀诱导期缩短,腐蚀率增大。通过电子探针分析和SEM观察发现,铁以TiFe形式在晶界析出,腐蚀优先在TiFe析出物上发生,并且沿晶界向内部发展。由此得知,缝隙腐蚀起源于TiFe析出物,继而成长并促进了缝内活性溶解。  相似文献   

6.
The effect of heat treatment on the microstructure and corrosion behaviour of Zn27Al1.5Cu0.02Mg alloy was examined. The alloy was prepared by melting and casting route and then thermally processed (T4 regime). Corrosion behaviour of the as-cast and heat treated alloy was studied in 3.5 wt.% NaCl solution using immersion method and electrochemical polarization measurements. The applied heat treatment affected the alloy microstructure and resulted in increased ductility and higher corrosion resistance of the heat treated alloy. Electrochemical measurements of the corrosion rate at the free corrosion potential are in agreement with the results obtained using the weight loss method.  相似文献   

7.
L.Q. Guo  M. Li  X.L. Shi  Y. Yan  X.Y. Li  L.J. Qiao 《Corrosion Science》2011,53(11):3733-3741
The effects of the annealing temperature on the microstructure and the corrosion behavior of duplex stainless steel 2507 were investigated by means of magnetic force microscopy (MFM), scanning Kelvin probe force microscopy (SKPFM), atomic force microscopy (AFM) and scanning electron microscopy (SEM). The SEM results indicated that the volume fraction of the austenite phase decreased with the increased annealing temperature. SKPFM/MFM measurements conducted in air at the room temperature and an ambient relative humidity of about 25% showed a higher Volta potential of the paramagnetic austenite than that of the ferromagnetic ferrite. The in situ AFM observation in a hydrochloric acid solution provided solid evidence that corrosion preferentially occurred in the ferrite phase. The sample annealed at 1100 °C exhibited a greater Volta potential difference between the ferrite and austenite and a higher corrosion rate in the ferrite, while that annealed at 1150 °C had a smaller Volta potential difference and a lower corrosion rate. The relative nobility and microstructure change of two phases, as well as their corrosion behavior, can be explained by the effect of the composition of alloying elements.  相似文献   

8.
The crevice corrosion behaviour of 13Cr stainless steel in NaCl solution was investigated mainly by electrochemical noise measurements, considering the influences of the crevice opening dimension (a) and the area ratio of the electrode outside the crevice to the one inside the crevice (r). Results show that the increase of r value prolongs the incubation period of crevice corrosion, but crevice corrosion develops rapidly once the crevice corrosion occurs. The crevice corrosion develops preferentially at the crevice bottom and then spreads to the whole electrode surface. Proton could reduce on the uncorroded area and hydrogen bubbles form inside the crevice.  相似文献   

9.
The effects of vacuum annealing and laser remelting on the microstructure and corrosion behaviour of plasma-sprayed Ni-coated WC coatings on steel substrate have been investigated. The laser remelting was operated in a continuous way while the vacuum annealing was operated with clamping the coating on the graphite face in order to avoid decarburization of WC. When compared with the as-sprayed coating, the microstructure of the post-heating treatment coatings has been found to consist of different phases. Moreover, the denser microstructure can be obtained after heating treatment, especially the laser remelting coating. Electron probe micro analyzer (EPMA) shows that the chemical composition remained largely unchanged except the “bumps” at the interface for as-sprayed and vacuum annealing coatings. The more uniform composition was obtained for laser remelting coating. The Vickers microhardness measurement shows a very slightly enhancement for post-heating treatment coatings, which may be duo to the lamellar structure, lower contemt and bulky of carbide for coatings. However, salt spray corrosion (SSC) show the laser remelting coating has the best corrosion resistance, which is due to its low number defects and uniform distribution of the phase and composition.  相似文献   

10.
The change of polarization curves and surface morphologies of SUS304 stainless steel was investigated in 3.5 mass% NaCl solution with or without the application of ultrasound (US). As the result, both the pitting corrosion and the crevice corrosion were largely suppressed by the application of US. The reason is attributed to the decrease in the concentration of hydrogen and chloride ions in pits or in the crevice by removing the corrosion product and stirring the liquid there.  相似文献   

11.
The variation of microstructure and corrosion characteristics with the applied annealing conditions of a HANA-4 (Zr-1.5Nb-0.4Sn-0.2Fe-0.1Cr) alloy were studied by utilizing transmission electron microscopy and a corrosion test at 360 °C in a water environment. The samples were annealed at temperature ranges from 540 to 660 °C up to 16 h after β quenching at 1050 °C. The corrosion behaviour with the annealing conditions was divided into two groups following the second phase characteristics. The suitable annealing temperature to obtain good corrosion resistance in the HANA-4 alloy ranged from 570 to 600 °C.  相似文献   

12.
Porous bulk metallic glasses (BMGs) are promising biomedical materials to be used for surgical implants. Here we report on successful formation of porous Ni-free Ti-based BMGs with a diameter exceeding 15 mm by spark plasma sintering the mixture of the gas-atomized Ti-based (Ti45Zr10Cu31Pd10Sn4) glassy alloy powder and solid salt powder, followed by leaching treatment into water to eliminate the salt phase. Corrosion behaviour of the produced porous Ti-based BMGs was investigated in Hanks' solution. The potentiodynamic polarization curves showed that the anodic current density in the porous Ti-based BMGs slowly increased during anodic polarization, suggesting the crevice corrosion.  相似文献   

13.
Hydrogen induced stress corrosion cracking of non galvanized and galvanized construction steels The processes of atmospheric corrosion and corrosion in collected water which may lead to hydrogen induced stress corrosion cracking of high-strength reinforcing steels in casing tubes before injection with concrete are discussed. Hydrogen uptake during corrosion occurs in weakly acid solutions as well as in neutral or alkaline aqueous solutions. The hydrogen uptake by proton discharge in acid solutions decreases with increasing pH of the electrolyte. Hydrogen can also be absorbed in neutral to weakly alkaline solutions if steels are plastically deformed and water reacts with the fresh iron surface. In alkaline solutions, hydrogen uptake is possible if, at the generally passivated steel surface, localized corrosion (pitting or crevice corrosion), local galvanic cells and a sufficient decrease in the pH of the pit electrolyte occurs. In the case of galvanized steels with damaged zinc layers, hydrogen uptake may result from the cathodic polarization of the free steel surface by zinc dissolution. The absorbed hydrogen interacts with the microstructure of the steels and weakens the bonds between the iron atoms. The influence of the microstructure of high-strength steels on the fracture behaviour is discussed on the basic of the so-called decohesion theory.  相似文献   

14.
The effects of the micro-plasma arc welding technique on the microstructure and pitting corrosion of different zones of an AISI 316L stainless steel were studied using different microscopy and electrochemical techniques. Galvanodynamic measurements and laser scanning confocal microscope were used to evaluate the corrosion evolution in situ. Results show, in general, the worst corrosion behaviour for the heat affected zone. Furthermore, there is a relation between the effects of the micro-plasma arc welding process on the materials microstructure and their pitting corrosion resistance. The weld zone was always in the cathodic position of the possible galvanic pairs.  相似文献   

15.
The corrosion inhibition behavior of bulk nanocrystalline ingot iron (BNII) fabricated from coarse polycrystalline ingot iron (CPII) by severe rolling technique by polyacrylic acid (PAA) was studied in 0.1 M H2SO4 using electrochemical impedance spectroscopy and potentiodynamic polarization techniques. The results indicated that PAA inhibited the acid induced corrosion of both iron specimens, with greater effect noted for BNII. The corrosion inhibiting effect was influenced by the microstructure of the iron samples. Synergistic inhibition effect was observed on addition of iodide ions to PAA in case of CPII while for BNII inhibition efficiency marginally increased.  相似文献   

16.
During localized (crevice and pitting) corrosion, a local cell is established between an anode within a crevice or pit and a cathode on the surrounding passive surface. Data are presented to show that concentrated acidic chloride solutions, simulating corrosion product hydrolysis within a crevice or pit, produce potentials which are active (negative) to the normal surface passive potential. This behaviour explains the previously observed active drift of corrosion potential after initiation of crevice or pitting attack in dilute chloride solutions. The active state in concentrated chloride solutions was quite noble (positive) compared to the active state in more dilute solutions. Thus, there is no need to invoke ohmic resistance effects to account for the active state within a crevice or pit.Experiments were devised in which the local anode within a crevice was physically separated from the nearby passive-surface cathode. When the two were coupled together electrically, the cathode surfaces were polarized nearly to the unpolarized local anode potential, with only a few millivolts anodic polarization at the anode within the crevice. The rate of localized corrosion appears from the data to be limited by the rate of dissolved-oxygen reduction on the cathode surfaces. Thus, localized corrosion in dilute chloride solutions will be increased by (a) raising the temperature, (b) adding an oxidizer such as Fe3+ ions, or (c) substituting external anodic polarization for dissolved oxidizers.The overall potential, Ecorr acquired by a specimen undergoing pitting or crevice corrosion is demonstrated to be near the protection potential, Ep below which pitting corrosion cannot propagate. Any potential active to Ecorr and Ep results in cathodic polarization and suppression of the anode reaction in a crevice or pit. Since both Ecorr and Ep vary with the extent of previous localized attack, Ep is not a unique property of the alloy as has been sometimes suggested and is of limited value in classifying alloy resistance to localized corrosion.  相似文献   

17.
Crevice corrosion of titanium and its alloys in 10% sodium chloride was investigated at 100°C with the aid of microelectrodes. Potential, pH and chloride ion concentration inside the crevice were monitored using an Ag/AgCl electrode, a tungsten microelectrode and a Ag/AgCl chloride ion selective microelectrode, respectively. The pH and Cl? concentrations within the crevice were calculated from the standard potential‐pH and potential‐log[Cl?] calibration curves. The effect of Mo on the crevice corrosion of titanium was also studied. The passivation behavior on the titanium and Ti‐15%Mo alloy was studied using electrochemical impedance studies. There was no apparent change in pH and Cl? ion activity inside the crevice for the alloy at 100°C, whereas a marginal decrease in pH and increase in Cl? ion concentration were observed for pure titanium. Thus pure titanium is susceptible to crevice corrosion in hot 10% NaCl solutions at 100°C. The chloride ion activity was found to be reduced for the alloy so that the pH inside the crevice increased. The corrosion reaction resistance (Rt) was found to increase with the addition of Mo as an alloying element. It also increases with externally applied anodic potential. Hence, Mo is an effective alloying element, which enhances the crevice corrosion resistance of titanium.  相似文献   

18.
The objective of this study is to define the corrosion behaviour of different Al–Zn coatings, deposited by magnetron sputtering. The coatings exhibiting the best corrosion resistance are then characterised during long immersion tests in neutral 5 wt.% NaCl solution.The results show that the corrosion behaviour is strongly dependent on the zinc content. The evolution of the degradation mechanism is also related to the microstructure of the alloys. These alloys present very interesting properties for steel protection. Nevertheless, the zinc content has to be well defined in order to avoid a high dissolution of the coating.  相似文献   

19.
This work studies the corrosion behaviour of two corrugated lean duplex stainless steels (SAF 2001 and 2304 grades) in eight alkaline solutions (carbonated and non-carbonated, saturated Ca(OH)2 solutions with different chloride contents). 2001 stainless steel is a new grade in market because of its composition. 2304 is a grade previously studied under different conditions. However, its use as reinforcement in concrete is new. Studies are carried out by polarization curves following scanning electronic microscopy (SEM) and optical observations. Results are compared to those of carbon steel and austenitic AISI 304 and duplex SAF 2205 under similar conditions. After corrosion tests in alkaline media with chloride, ferrite tends to corrode selectively in 2304 duplex, while austenite corrodes selectively in 2001 under the same conditions. The influence of the duplex microstructure on attack development and morphology is analyzed. The electrochemical parameters obtained from the polarization curves suggest 2001 could replace 304 keeping the structure its corrosion performance (and with clear economical advantages). 2304 shows better corrosion behaviour than the more expensive 304, but somewhat lower than the excellent behaviour shown by 2205.  相似文献   

20.
Q. Hu  J.Y. Huang 《Corrosion Science》2010,52(4):1205-1212
The crevice corrosion of Q235 carbon steels in a solution of NaHCO3 and NaCl was investigated mainly by electrochemical noise. Three stages of crevice corrosion were found and include an induction stage, a transformation stage and a stable development stage. Principal component analysis and hierarchical agglomerative cluster analysis were used to identify the crevice corrosion stages. The electrode area ratio of the outer to the inner part of the crevice (r) significantly influenced the occurrence and development of crevice corrosion. The induction stage time increased as r increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号