首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The MOF [Ag (qox) (4-hb)] 1, was obtained at room temperature by the reaction of AgNO3, quinoxaline (qox) and 4-hydroxy benzoate (4-hb). A cluster molecule containing two silver atoms, two qox and two 4-hb ligands is considered the basic building block of the structure of 1. 3D-network structure is created via H-bonds and π-π stacking. The MOF 1 was tested as corrosion inhibitor for carbon steel in 1 M HCl solution using potentiodynamic polarization and electrochemical impedance techniques (EIS). The polarization measurements indicated that the MOF 1 is of mixed type. The adsorption of MOF 1 obeyed Langmuir adsorption isotherm. The inhibition efficiency increased with increase in MOF 1 concentration but decreased with increase in temperature. The activation and thermodynamic parameters were calculated and discussed. Mechanism of inhibition is explained on the basis of molecular structure of the inhibitor.  相似文献   

2.
To simulate the atmospheric corrosion of steels galvanized with Zn under different conditions, artificial zinc rusts of basic zinc salt (BZS) were prepared by hydrolyzing ZnO particles in aqueous solutions including ZnCl2, ZnSO4 and Zn(NO3)2. In ZnCl2–ZnSO4, ZnSO4–Zn(NO3)2 and ZnCl2–Zn(NO3)2–ZnSO4 systems, zinc hydroxysulfate (Zn4(OH)6(SO4nH2O) was formed while zinc hydroxychloride (Zn5(OH)8Cl2·H2O) was generated in ZnCl2–Zn(NO3)2 system. Zinc hydroxynitrate (Zn5(OH)8(NO3)2·2H2O) was yielded in only Zn(NO3)2 system. All the formed artificial zinc rusts were hexagonal plate particles. These results suggest that SOx is the most effective corrosive gas on the formation of BZS rusts on galvanized steel.  相似文献   

3.
The formation of corrosion products on Zn55Al coated steel has been investigated upon field exposures in a marine environment. The corrosion products consisted mainly of zinc aluminium hydroxy carbonate, Zn0.71Al0.29(OH)2(CO3)0.145·xH2O, zinc chloro sulfate (NaZn4(SO4)Cl(OH)6·6H2O), zinc hydroxy chloride, Zn5(OH)8Cl2·H2O and zinc hydroxy carbonate, Zn5(OH)6(CO3)2 were the first three phases were formed initially while zinc hydroxy carbonate Zn5(OH)6(CO3)2 was formed after prolonged exposure in more corrosive conditions. The initial corrosion product formation was due to selective corrosion of the zinc rich interdendritic areas of the coating resulting in a mixture of zinc and zinc aluminium corrosion products.  相似文献   

4.
A new 1D terbium coordination polymer, {[Tb(2,4-dcpa)3(H2O)2]·(4,4′-bpy)1.5(H2O)2}n (1) [2,4,-dcpa = 2,4-dichlorophenoxyacetate, 4,4′-bpy = 4,4′-bipyridine], was prepared by hydrothermal synthesis and characterized by IR spectroscopy, elemental analysis, thermogravimetric analysis (TGA) and single-crystal X-ray diffraction. Complex 1 exhibits an infinite chain structure with a {Tb2(2,4-dcpa)6(H2O)4} dimeric repeat unit. Each Tb3+ ion is nine-coordinated to two water molecules, one monodentate carboxylate group and four bridging carboxylate groups in which the carboxylate groups are bonded to the terbium ion in one modes: the chelating–bridging tridentate. Three-dimensional fluorescence spectra of 1 were detected at room temperature under the excitation and the emission wavelengths in the range of 420–750 nm with the interval of 5 nm. The lifetime of 1 in solid-state at room temperature up to 1.132 ms. On the other hand, poor luminescence efficiency has been noted for the Tb3+-2,4-dcpa complex.  相似文献   

5.
In situ growth of Mg–Al hydrotalcite conversion film on AZ31 alloy has been developed by a two-step method. The characteristics of the films were investigated by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electronic microscope (SEM) observation, electrochemical and immersion tests. The film formation process was proposed based on the open circuit potential (OCP) measurements and surface analysis. A precursor film with network cracks is first formed and then this film is transformed into a compact and uniform hydrotalcite (Mg6Al2(OH)16CO3·4H2O) film after the post treatment. This dense Mg–Al hydrotalcite film can provide effective protection to the AZ31 alloy.  相似文献   

6.
7.
Two novel complexes [Cd(phen)(NO3)(NO2)(H2O)]n (1) and Cd(phen)2(NO3)(NO2) (2) (phen = 1,10-phenanthroline) have been synthesized by the reductive reaction of metal source Cd(NO3)2·4H2O with phen and benzidine in the mixed solution of DMF, ethanol and water. Crystal structures of complexes 1 and 2 were determined by single-crystal X-ray diffraction. Complex 1 is a one-dimensional (1D) zig-zag infinite chain in which (phen)Cd(II) units were bridged by two O atoms of NO2. The three-dimensional (3D) supramolecular structure of 1 is constructed through hydrogen-bond and aromatic π–π stacking interactions between adjacent metal–organic polymeric coordination chains. Complex 2 is a mononuclear structure, and self-assembled through π–π stacking interactions to form a three-dimensional (3D) supramolecular structure. The complex 1 exhibits luminescent property in the near-UV at room temperature in solutions of DMSO and DMF with the emission energy following the order DMF < DMSO, which might be ascribed to the presence of a highly polarized ground state. Complexes 1 and 2 have blue-purple luminescence at room temperature in the solid state. The blue-purple luminescence of the complexes is due to π* → π transition of phen.  相似文献   

8.
Zn-Al-Mg alloy (ZM) coating provides a decisively enhanced corrosion resistance in a salt spray test according to DIN EN ISO 9227 (NSS) compared to conventional hot-dip galvanised zinc (Z) coating because of its ability to form a very stable, well adherent protecting layer of zinc aluminium carbonate hydroxide, Zn6Al2(CO3)(OH)16·4H2O on the steel substrate. This protecting layer is the main reason for the enhanced corrosion resistance of the ZM coating. Surface corrosion products on ZM coated steel consist mainly of Zn5(OH)6(CO3)2, ZnCO3 and Zn(OH)2 with additions of Zn5(OH)8Cl2 · H2O and a carbonate-containing magnesium species.  相似文献   

9.
Well crystallized copper vanadium oxide hydroxide hydrate (Cu3(OH)2V2O7·nH2O) nanoparticles have been successfully synthesized by a simple hydrothermal method. The morphology and structure of the as-synthesized products were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy. The composition of Cu3(OH)2V2O7·nH2O was studied by thermal analysis (TG, DTA), which indicates that there are two molecules of water in a Cu3(OH)2V2O7·nH2O molecular formula. Electrochemical properties of Cu3(OH)2V2O7·2H2O nanoparticles as positive electrode of lithium ion battery were studied by conventional charge/discharge tests at different current density, showing steady initial discharge platforms near 1.7 V. The first discharge capacity of Cu3(OH)2V2O7·2H2O electrode arrives at 868 and 845 mAh g−1 at current density of 0.01 and 0.02 mA cm−2, respectively.  相似文献   

10.
Four pigments of various morphology – specularite, α-Fe2O3; goethite, α-FeO(OH); talc, (Mg3(OH)2(Si4O10); and graphite, C – without and with polyaniline phosphate coating, were tested for the anticorrosion performance in coatings produced by epoxy binders on iron plates. The corrosion tests were carried out in a condenser chamber with continuous water condensation or humidity with sulfur dioxide, and in a salt mist cabinet. Polyaniline coating of pigments in all cases improved the anticorrosion properties. Graphite coated with polyaniline performed the best among eight systems under investigation. The role of graphite and polyaniline conductivity in the electron transfers associated with corrosion of iron has been proposed.  相似文献   

11.
Self-healing mechanism of a protective film against corrosion of zinc at scratches in an aerated 0.5 M NaCl solution was investigated by polarization measurements, X-ray photoelectron spectroscopy (XPS) and electron-probe microanalysis (EPMA). The film was prepared on a zinc electrode by treatment in a Ce(NO3)3 solution and addition of aqueous solutions containing 9.98 or 19.9 μg/cm2 of Zn(NO3)2 · 6H2O and 55.2 μg/cm2 of Na3PO4 · 12H2O. After the coated electrode was scratched with a knife-edge crosswise and immersed in the NaCl solution for many hours, polarization measurements, observation of pit formation at the scratches, XPS and EPMA were carried out. This film was remarkably protective and self-healing against zinc corrosion on the scratched electrode. The cathodic and anodic processes of zinc corrosion were markedly suppressed by coverage of the surface except for scratches with a thin Ce2O3 layer containing a small amount of Ce4+ and the surface of scratches with a layer composed of Zn3(PO4)2 · 4H2O, Zn(OH)2 and ZnO mostly.  相似文献   

12.
The corrosion behaviour of die-cast AZ91D magnesium alloys in sulphate solutions was investigated by SEM, FTIR and polarization measurements. For immersion times less than 48 h, no pitting corrosion occurred and only generalized corrosion was apparent. According to the polarization curves, the corrosion rate order of the die-cast AZ91D Mg alloy in three aqueous solutions was: NaCl > MgSO4 > Na2SO4. The main corrosion products were Mg(OH)2 and MgAl2(SO4)4·22H2O in the sulphate solutions and the product film was compact. Precipitation of MgAl2(SO4)4·22H2O required a threshold immersion time.  相似文献   

13.
A corrosion mechanism is proposed for Al3Mg2, based on electrochemical tests, XPS, and depth profiling using XPS and ToF-SIMS. After short (∼2 min) solution exposure, the surface consists of a surface film above dealloying. The dealloying is attributed to selective Mg dissolution and the surface rearrangement of Al into islands, although the metallic Al could alternatively be formed by two reduction reactions. The surface film thickness was ∼10 nm. After exposure to ultra-pure water, the composition was AlMg1.3O0.2(OH)5.1 corresponding to Al(OH)3·1.1 Mg(OH)2·0.2MgO. After exposure to 0.01 M Na2SO4, the composition was AlMg0.2O0.4(OH)2.5 corresponding to Al(OH)3·0.1Al2O3·0.2MgO. Longer exposure produced a thicker surface film, more pronounced metallic Al islands and more MgH2. Three possibilities are identified for MgH2 formation. Al(OH)3 formation is attributed to a precipitation reaction. Bulk nanoporous Al3Mg2 formation is predicted to be possible by Mg dealloying of Mg17Al12.  相似文献   

14.
The acetic-acid induced atmospheric corrosion of lead was studied at 22.0 °C and 30-95% RH and at 4 °C and 95% RH. The samples were exposed to synthetic air with careful control of relative humidity, temperature, acetic acid concentration (170 ppb) and flow conditions. Reference exposures were carried out in clean humid air. Samples were analysed by gravimetry, ion chromatography, quantitative carbonate analysis, ESEM and XRD. Traces of acetic acid vapour strongly accelerate the atmospheric corrosion of lead. The corrosion rate is only weakly dependent on relative humidity in the range 95-50% RH. The accumulated amount of acetate is independent of RH in the range 95-40%. Lead corrosion in humid air in the presence of acetic acid vapour exhibits a negative correlation with temperature. The crystalline corrosion products formed on lead in the presence of acetic acid vapour were lead acetate oxide hydrate (Pb(CH3COO)2 · 2PbO · H2O) and massicot (β-PbO) together with plumbonacrite (Pb10O(CO3)6(OH)6) or hydrocerussite (Pb3(CO3)2(OH)2). The transformation of lead acetate oxide hydrate into hydrocerussite and vice versa was also studied. The mechanism of corrosion is addressed, and the implications of this study for combating the corrosion of lead organ pipes in historical organs are discussed.  相似文献   

15.
This article presents the results of a study about the corrosion behaviour of four aluminium alloys (EN AW 2024, 3003, 6063, and 1050) in contact with a commercial thermal storage material based in the Glauber’s salt (Na2SO4·10 H2O). Results indicate that the Al 2024 alloy is not compatible with this material due to the extense formation of NaAlCO3·(OH)2 in contact with air. The aluminium alloys 3003, 6063 and 1050 showed to be fully compatible with the material.  相似文献   

16.
To simulate the atmospheric corrosion of steels galvanized with Ti–Zn alloys under different atmospheric temperatures, Ti(IV)-doped zinc hydroxychloride (Zn5(OH)8Cl2·H2O: ZHC) was prepared at various aging temperatures of 6–120 °C. Adding the Ti(IV) inhibited the crystallization and particle growth of ZHC, showing a minimum at 50 °C. Higher aging temperature promoted the formation of TiO2 nano-particles. Elevating the aging temperature suppressed the adsorption of H2O and CO2 on Ti(IV)-doped ZHC. These results suggest that the alloying Ti in galvanized steel forms compact zinc rust layer at various atmospheric temperatures in marine environment, which would lead to the enhancement of corrosion resistance.  相似文献   

17.
Corrosion products that had been formed on copper and silver plates exposed in Miyake Island, where suffered a volcanic eruption in 2000, were analyzed by X-ray techniques to get better understanding of copper and silver corrosion in harsh environment. The exposure experiment was carried out from September 2004 to April 2005. Many kinds of patina were found on copper such as cuprite (Cu2O), posnjakite (Cu4SO4(OH)6 · H2O), brochantite (Cu4SO4(OH)6), antlerite (Cu3SO4(OH)4), and geerite (Cu8S5). For silver, silver chloride (AgCl) and silver sulfide (Ag2S) were formed. Although the volcanic activity had greatly subsided, the atmospheric corrosion of copper and silver plates exposed on Miyake Island was mainly affected by volcanic gases, wet-dry cycles in the environment, and sea-salt aerosols.  相似文献   

18.
New bis(ethylenedithio)tetraselenafulvalene (BETS) based radical cation salts with tetrahedral dianions [CdBr4]2− and [HgBr4]2− of the (BETS)4MBr4(PhBr) composition were prepared by electrochemical crystallization. Room-temperature crystal structure of (BETS)4CdBr4(PhBr) determined by single crystal X-ray diffraction involves BETS radical cation layers of the θ-type packing and insulating layers consisting of [CdBr4]2− anions and PhBr molecules. In the neighboring conducting layers, the stacks are arranged perpendicular to each other. A metal-to-metal transition within 225–230 K range was found in both (BETS)4CdBr4(PhBr) and (BETS)4HgBr4(PhBr). The behavior of electrical resistivity of these salts differs substantially along and across conducting layers. The study of magnetoresistance of (BETS)4HgBr4(PhBr) revealed weak Shubnikov-de Haas oscillations in fields higher than 6 T.  相似文献   

19.
Iron(II) hydroxide and hydroxychloride precipitates were obtained by mixing FeCl2 · 4H2O and NaOH aqueous solutions with various concentration ratios R′ = [Cl]/[OH] = 2 [FeCl2]/[NaOH] at [NaOH] = 0.4 mol L−1. They were analysed by Infrared spectroscopy after 24 h of ageing at room temperature. Fe(OH)2 was obtained alone only for the smallest values of R′, typically R′ ? 1.16. β-Fe2(OH)3Cl formed as soon as R′ ? 1.40 and was obtained alone for R′ ? 2.25. The initial precipitates were oxidised by addition of a small amount of hydrogen peroxide (5 mL of an aqueous solution containing approximately 30 vol% H2O2) instead of O2. The action of H2O2 on Fe(OH)2 gave rise to δ-FeOOH as already reported. Its action on Fe(II) hydroxychlorides gave rise to akaganéite β-FeO1−2x(OH)1+xClx. A transformation of the two-phase system found at R′ = 1.5 after long ageing times (6 months) was observed and β-Fe2(OH)3Cl remained alone. This slow transformation of Fe(OH)2 into β-Fe2(OH)3Cl may explain why β-Fe2(OH)3Cl was only reported as a corrosion product on iron archaeological artefacts. Finally, the respective domains of stability of Fe(OH)2 and β-Fe2(OH)3Cl were demarcated and an estimation of the standard Gibbs free energy of formation of β-Fe2(OH)3Cl could be given: .  相似文献   

20.
The corrosion behaviour of an HVOF Ni–5Al/WC–17Co coating on Al-7075 is investigated in 0.5 M H2SO4. In the temperature range of 25–45 °C, the coating exhibits pseudopassivity that effectively protects from localized corrosion. At 25 °C, pseudopassivity proceeds via three stages: during the first stage, oxidation of W in the binder phase occurs. The second stage is characterized by oxidation of W in both the binder and the carbide particles. The third stage is characterized by intensive hydration of WO3 and formation of Co3O4. During the second and third pseudopassive stages, the formation of a bi-layer surface film is postulated. The inner layer, consisting of anhydrous oxides, has a barrier character. The outer layer, composed of WO3 · xH2O, is unstable. In case of surface film disruption, the bond coat successfully hinders corrosion propagation into the Al-alloy. Higher electrolyte temperatures lead to faster corrosion kinetics and higher tendency for pitting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号