首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Junlei Tang 《Corrosion Science》2008,50(10):2873-2878
Palladium films with good adhesive strength were deposited on 316L stainless steel by electroless plating and electroplating. Scanning electronic microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, weight loss tests and electrochemical methods were used to study the properties of the films. The electroless plated palladium film mainly consisted of palladium, phosphorus and nitrogen, and the electroplated palladium film was almost pure palladium. XPS analysis indicated that palladium was present in the films as metal state. The palladium plated stainless steel samples prepared by both methods showed excellent corrosion resistance in strong reductive corrosion mediums. In boiling 20% dilute sulfuric acid solution, the corrosion rates of the palladium plated 316L stainless steel samples were four orders of magnitude lower than that of the original 316L stainless steel samples. In the solution with 0.01 M NaCl, the palladium plated samples also showed better corrosion resistance. In comparison, the electroplated samples showed slightly better corrosion resistance than electroless plated samples, which may be attributed to less impurities and thereby higher corrosion potential for the former.  相似文献   

2.
Corrosion behaviour of type 304 stainless steel was investigated, with particular attention to additive effects of hydrosulphite (Na2S2O4) on corrosion in 0.1 mol/l H2SO4 solution with various amounts of Na2S2O4 up to 60 mmol/l.Corrosion of SUS304 occurred below pH 3.0 at 30 °C in a 0.1 mol/l H2SO4 solution in which Na2S2O4 was added to 0.1-20 mmol/l. The maximum corrosion rate at 30 °C was measured as 7.2 g/m2 h (7.9 mm/y) in 0.1 mol/l H2SO4-10 mmol/l Na2S2O4 at pH 1.2. Microscopic surface observation revealed that active dissolution was accompanied by intergranular corrosion at the metal surface.The SUS304 was easily passivated in 0.1 mol/l H2SO4 solution with more than 30 mmol/l Na2S2O4. NiS was detected in the passivated film.  相似文献   

3.
Palladium-copper alloy films (Cu 2.93-5.66 at.%) were deposited on 316L stainless steel by electroplating. The films showed good adhesive strength and increased surface micro-hardness. In boiling mixture of 90% acetic acid + 10% formic acid + 400 ppm Br under stirring (625 r/min), the Pd-Cu films showed better corrosion resistance than Pd film. The Pd-5.66%Cu films showed the lowest corrosion rate almost three orders of magnitude lower than that of 316L matrix. The increased corrosion resistance of Pd-Cu films was attributed to the improved passivity, better barrier effect, increased surface hardness and the effect of Cu to resist pitting.  相似文献   

4.
The corrosion resistance of conducting polyaniline (PANi) coatings deposited on 316L stainless steel (316L SS) at various cycle numbers of cyclic voltammetry (2-, 3- and 4-cycles) by electro-polymerization in sulphuric acid solution containing fluoride was investigated by electrochemical techniques. The corrosion resistance of the 316L SS substrate was considerably improved by the PANi coating. The increase of the cycle number of cyclic voltammetry increased the thickness and enhanced the performance of the PANi coating due to low porosity.  相似文献   

5.
The electrosynthesis of polypyrrole films onto 316L stainless steel from near neutral and alkaline solutions containing molybdate and nitrate is reported. The corrosion behavior of the coated electrodes was investigated in NaCl solutions by electrochemical techniques and scanning electron microscopy. The polymer formed potentiostatically in a solution of pH 12 is the most efficient in terms of adhesion and corrosion protection. The coating significantly reduces the pitting corrosion of the substrate. The results are interpreted in terms of the nature of dopants, the good electroactivity of the polymer formed in alkaline solution and the passivating properties of the oxide layer.  相似文献   

6.
J.R Kish  M.B Ives 《Corrosion Science》2003,45(7):1571-1594
Electrochemical, AES and XPS techniques were employed to characterize the anodic behaviour of S43000 stainless steel in concentrated sulphuric acid (90.0-96.4 wt.%). Electrochemical experiments showed that passivity is not spontaneous and requires anodic polarization in the acids studied. Rotating cylindrical electrode experiments showed that the corrosion rate is controlled by the mass transfer rate of FeSO4 from a saturated surface salt. AES and XPS analyses provided evidence that passivity involves the formation of a chromium-rich oxide-hydroxide film. The passivation mechanism and passive state stability are considered to relate to the manner in which undissociated H2SO4 molecules participate in the corrosion process. The findings have meaningful implications regarding the development of more corrosion resistant stainless steels for acid service.  相似文献   

7.
The organic–inorganic composite film was deposited on the 304 stainless steel as bipolar plate material for proton exchange membrane fuel cells by spin-coating method. As shown by XRD, N2 adsorption–desorption and TEM, the composite films exhibit ordered mesoporous structures. The corrosion tests in 0.5 M H2SO4 system displayed that, compared with 304SS, the composite films made corrosion potential shifted to positive direction by 250–1000 mV (SCE) and corrosion current decreased by 1–3 orders of magnitude. Wherein, the C-50–60% composite film showed the optimal protective performance, its corresponding potentiostatic polarization process was extremely stable in the simulated fuel cells environment.  相似文献   

8.
The transition from metastable to stable pitting was studied in 0.5 M NaCl water solution for two cast duplex stainless steels under different microstructural conditions achieved by annealing in the range from 900 °C to 1200 °C. The ensuing microstructural changes in heat treated steels were defined and correlated with established pitting potentials (Ep) and sites of corrosion damage initiation. The variations in Ep have been discussed in terms of secondary phases precipitation. The critical condition for pit stability was quantified and used to select an appropriate microstructural state, resulting in the higher potential at which stable pit growth is first observed.  相似文献   

9.
This study examines the effect of niobium (Nb) addition on the electrochemical properties of low alloy steel using electrochemical techniques in a 10 wt.% sulfuric acid solution as well as surface analysis techniques. The potentiodynamic test reveals the passive behaviour of all specimens and a decrease in the passive currents with increasing Nb content. Electrochemical impedance spectroscopy (EIS) shows that the Nb-containing steels have higher passive and charge transfer resistance than the control samples. These results suggest that the interaction of elements improves the corrosion resistance of low alloy steel due to the formation of Nb, C, S, P, and Fe products on the surface.  相似文献   

10.
The corrosion resistance of a two-layer polymer (silane + parylene) coating, on implant stainless steel was investigated by microscopic observations and electrochemical measurements. Long term exposure tests in Hanks solution revealed that the coating of 2 μm can be successfully used for corrosion protection. However, the addition of H2O2, simulating the inflammatory response of human body environment causes a dramatic destruction of the protective coating. Analysis of the experimental data in terms of circuit models enables proposing a deterioration mechanism. OH radicals formed at the metal surface attack the polymer, thus the deterioration starts from the metal/polymer interface and progress towards the outward surface.  相似文献   

11.
Electrochemical potentiokinetic reactivation technique (EPR) was employed to assess degree of sensitization in 316L stainless steel diffusion bonded joint (DBJ). The result showed the degree of sensitization of DBJ was much smaller than that of base material (BM). No chromium carbides precipitated at grain boundaries in DBJ after 100 h treatment at 650 °C, while chromium carbides could be seen clearly in the BM after 8 h treatment, indicating that DBJ has better intergranular corrosion resistance than BM. Diffusion bonding technique will not increase intergranular corrosion susceptibility of 316L DBJ. Reactivation potential has the biggest effect on sensitization.  相似文献   

12.
The effects of applied torque on corrosion behaviour of 316L stainless steel with crevices were investigated using the cyclic potentiodynamic polarization method. Three kinds of crevices (316L-to-polytetrafluoroethylene, 316L-to-fluoroelastomeric and 316L-to-316L) were tested in artificial seawater at 50 °C. Corroded surface morphology was also investigated using scanning electron microscopy. Results indicate similar trends in crevice corrosion susceptibility with increasing applied torque. Among the three crevices, the 316L stainless steel specimen, coupled to the 316L stainless steel crevice former, is the most susceptible to crevice corrosion.  相似文献   

13.
The crevice corrosion behaviour of stainless steels containing 25 mass% Cr, 3 mass% Mo and various amounts of Ni was investigated in natural seawater. The results showed that ferritic steels containing nickel were more resistant to corrosion than both ferritic steels without nickel and austenitic steels. The superiority of the Ni bearing ferritic steel over the other steels was in close agreement with the depassivation pH of those steels in acidic chloride solutions. The results showed that the addition of Ni to ferritic steel was effective in decreasing the depassivation pH and the dissolution rate in acidic chloride solutions at crevices.  相似文献   

14.
The protective properties of polypyrrole coatings containing hexacyanoferrate anions are presented. The composite coatings were electrodeposited galvanostatically on stainless steel from the aqueous solutions containing pyrrole monomer and potassium hexacyanoferrate(II) together with traces (10 μmol dm−3) of free CN ions. The protective properties of the resulting coatings were investigated in the highly aggressive medium of 0.1 mol dm−3 HCl and 0.4 mol dm−3 NaCl. Diagnostic experiments included measurements of open circuit potential with time of exposure, chronoamperometric (current-time) examination of the steel samples at a selected constant potential of 0.5 V and potentiodynamic measurements. To get insight into the dynamics of the steel dissolution at open circuit potential and at the selected anodic potential, changes of concentrations of iron and chromium in the test solution as a function of exposure time were determined using atomic absorption spectrometry. Morphology of the composite film was examined using scanning electron microscopy.  相似文献   

15.
Y.X. Qiao  W. Ke 《Corrosion Science》2009,51(5):979-986
The electrochemical behaviour of high nitrogen stainless steel in acidic solutions was studied by potentiodynamic polarization, EIS, Mott-Schottky and XPS. The passive film formed in neutral NaCl solution was very stable, but the stability of the film decreased with the addition of H2SO4 into the solution. The passive film formed in acidic Na2SO4 has a superior protective ability than that in acidic NaCl solution. The stability of the film formed in tested solution decreased with increase of applied potentials. The film formed on steel surface was of n-type semiconductor. Chloride penetration mechanism was proposed for the observed passive film breakdown.  相似文献   

16.
The corrosion behavior of 316L stainless steel in eutectic Li/Na molten carbonate containing various amounts of Mg, Ca and Ba ions has been evaluated by electrochemical techniques in combination with oxygen solubility determinations. Open circuit potential and corrosion rates have been correlated to the oxygen solubility properties of the carbonate melt for an understanding of the kinetic aspects of the corrosion process. It has been found that minor additions of Mg and Ca ions (1.5% molar fraction) distinctly promote a higher carbonate oxygen solubility, whereas Ba has only a marginal effect on it. In general, the electrochemical investigations showed that at 1.5% molar fraction addition there exist a strong correlation between steel corrosion rate and oxygen solubility indicating that (i) corrosion process takes place under a diffusion-limited cathodic reduction of dissolved O2 and (ii) corrosion rate is significantly increased with respect to the no-added Li/Na carbonate by the introduction of Mg and Ca ions that therefore serve as a sort of oxidizing agents. However, with larger Mg and Ca additions (up to 10% mol) the corrosion process was found to pass progressively under an anodic control despite decreasing oxygen solubility values. This effect is ascribed to the growth of an alkaline-earth doped lithium ferrite layer with enhanced barrier-like properties. In contrast, further additions of Ba cation in carbonate did not change the corrosion mechanism for its inability to react with the growing corrosion scale. Only minor reductions of corrosion rate are detected in agreement with the lower tendency of the melt containing high molar fractions of Ba to solubilize the oxygen gas.  相似文献   

17.
In the current work, the mechanism for oscillations in mixed potential of UNS S30403 Stainless steel in concentrated sulphuric acid is refined to clarify the importance of the stability limit of nickel sulphide in relation to the passivation potential of the steel. It is rationalized that the oscillation of the corrosion potential can occur spontaneously only when the nickel sulphide stability limit lies within a specific potential range above the passivation potential of the steel and below the tangent for re-activation. Two possible kinetic models are proposed and contrasted to illustrate which better explains the potential-time behaviour for depassivation.  相似文献   

18.
304L and 316L steels were nitrided at 425 °C for 30 h and examined at various depths in 0.1 M Na2SO4 acidified to pH 3.0. In the near-surface region with about 7-14 wt% N, at potentials of active state anodic currents were much higher than those for untreated steels, whereas in deeper regions with <7 wt% N the currents were only slightly increased in comparison with untreated steels or they were even lower in passive and transpassive states. Surface films were composed of oxygen-containing species on top and of Cr-N species in deeper layers. It is suggested that strong corrosion of near-surface regions is associated with nitride precipitates. Beneficial effect of low nitrogen concentrations can be due to initially accelerated corrosion which leads to larger amounts of passivating species and to the accumulation of corrosion resistant chromium nitrides.  相似文献   

19.
Y. Sun 《Corrosion Science》2010,52(8):2661-4290
The electrochemical corrosion behaviour of the carburised (expanded austenite) layer on 316L austenitic stainless steel produced by low temperature plasma carburising has been studied in 0.5 M NaCl and 0.5 M HCl + 0.5 M NaCl solutions. The present work focuses on the variation of the corrosion behaviour of the carburised layer with depth from the surface and the effect of carbon concentration on electrochemical behaviour. The results show that the carburised layer has excellent resistance to localised corrosion. There exists a critical carbon concentration, above which the expanded austenite possesses excellent resistance to both metastable pit formation and pit growth.  相似文献   

20.
The resistance of both AISI 316L stainless steel (AISI 316L SS) and commercially pure titanium (cpTi) to localized corrosion in a simulated body fluid solution was investigated using numerical simulations. The resulting model, based on transport equations in dilute solutions, is designed to predict the susceptibility of these two biomaterials to crevice corrosion initiation. The results show that cpTi and AISI 316L SS alloy are very resistant to the initiation of crevice corrosion in 0.9% NaCl solution and AISI 316L SS alloy is more susceptible to corrosion initiation over the long term than cpTi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号