首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
采用先熔炼Ti2Cu再添加Ni粉进行复合球磨的工艺方法探索制备了Ti—Cu—Ni基非晶合金,并研究了Ni粉添加量和球磨时间对合金相结构与电化学储氢性能的影响。结果表明,Ni粉添加量和球磨时间对合金的相结构与电化学性能有显著影响。其中,晶态Ti2Cu熔铸合金的放电容量仅为3.7mAh/g;将其球磨120h后的放电容量仍然只有14.4mAh/g;当添加Ni粉复合球磨120h形成非晶结构后,其放电容量得到明显提高,其中TizCu+50%Ni复合物的最大放电容量为82mAh/g,Ti2Cu+100%Ni复合物的最大放电容量达到168mAh/g。同时,随着球磨时间的增加,合金的非晶化程度也增强,放电容量随之提高。研究发现,添加Ni粉进行复合球磨有助于Ti2Cu的非晶化转变,同时Ni还起到良好的电催化作用,改善了合金的电化学性能。  相似文献   

2.
李嵩  孙俊才  季世军 《功能材料》2005,36(12):1970-1973
为了提高合金的放电容量和高倍率放电性能,通过球磨Zr7Ni10合金对Zr0.5Ti0.5Mn0.7V0.2Co0.1Ni1.2合金表面进行改性,并研究了不同Zr,Ni10量和球磨时间对合金的相结构和电化学性能的影响。当采用8%(质量分数)Zr,Ni10进行球磨1h后,合金仍保持晶态,在50mAh/g电流条件下经过9次循环达到最大放电容量266mAh/g,比未球磨合金提高了约20%,而且在300mA/g电流条件下仍能保持最大放电容量的85%。随着球磨时间的增加,合金逐渐转为非晶态,合金的放电容量也迅速降低。非晶化合金在800℃进行热处理后大部分重新晶化,经过22次循环达到最大放电容量200mAh/g。  相似文献   

3.
李嵩  季世军  孙俊才 《功能材料》2004,35(3):308-311
研究了贮氢电极合金Zr1-xTixMin0.7V0.2Co0.1Ni1.2的相结构和电化学性能。结果表明,随着掺Ti量的增加,该合金主相中C15型Laves相含量逐渐减少而C14型Laves相含量逐渐增加,同时非Laves相Zr7M10和TiNi相全部消失,说明元素Ti掺杂量的增加抑制了第二相的产生。当含Ti量x=0.2时,该合金具有最大放电容量Cmax为354mAh/g,在放电电流为300mAh/g条件下,高倍率放电性能比母体合金提高了15%。而对于合金Zr0.75Ti0.2La0.05Mn0.7V0.2Co0.1Ni1.2,其活化性能被大大提高,只需4次就能达到最大放电容量372mAh/g,而且经过30次循环仍能保持最大放电容量的93%。  相似文献   

4.
采用真空感应悬浮熔炼法制备了Ti3Al合金,将合金粉碎后与Ni粉进行机械球磨,从而制得非晶态Ti-Al储氢电极合金。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、电化学测试等方法研究了Ti-Al合金的微结构和电化学性能。XRD分析表明,未添加Ni粉球磨后,Ti3Al合金不发生非晶态转变,而添加Ni粉球磨后,Ti3Al合金由晶态转变为非晶态。电化学测试表明未添加Ni粉的Ti3Al合金最大放电容量仅为100.7mA·h·g-1;当添加Ni粉与合金进行球磨之后,随着Ni粉添加量的增加,合金最大放电容量先增加后减小;当Ni粉添加量为200wt%时,合金最大放电容量达到最大值476.7mA·h·g-1。对Ti3Al+200wt%Ni合金的进一步研究表明,随着球磨时间的增加,其最大放电容量先增加后减小。总之,Ni促进了Ti-Al合金的非晶转变,改善了合金的电化学性能,Ni粉的添加量和球磨时间对合金的电化学性能有显著影响。  相似文献   

5.
梁洁  陈云贵  陶明大  吴朝玲 《功能材料》2006,37(9):1451-1454
采取手工混合和混合加烧结的方法,研究了Cu粉和Ni粉添加剂对V20Ti30Cr50贮氢合金电化学性能的影响.结果表明:烧结前,添加铜粉的V20Ti30Cr50合金的电极具有较高的放电容量,其最大放电容量为342.7mAh/g,但放电平台电压较低,仅为-0.4V(相对于Hg/HgO电极),而添加镍粉的合金电极的最大放电容量仅为73.4mAh/g,没有明显的放电平台;烧结后,添加铜粉的电极由于表面Cu4Ti3化合物的生成,电极的放电容量降低到30mAh/g,放电平台电压仍仅为-0.4V,而烧结的添加镍粉的电极合金与镍粉表面结合紧密,同时有TiNi第二相的生成,增加了合金电极表面的电催化活性,合金的放电平台电压提高到-0.8V,并且最大放电容量显著增加到209mAh/g.  相似文献   

6.
乔玉卿  赵敏寿  田冰  朱新坚  曹广益 《功能材料》2005,36(12):1875-1878
利用高能球磨方法制备纳米Mg2Ni储氢合金,用于高容量MH/Ni电池氢化物电极电化学性能研究。XRD和TEM测试结果表明,机械合金化方法制备Mg2Ni合金的历程为合金化——非晶化——纳米晶化,球磨时间直接影响Mg2Ni合金的结构。高能球磨20h可以制备非晶态Mg2Ni合金,比普通的机械合金化方法制备非晶态Mg2Ni合金的时间减少了约5倍之多;高能球磨30h可以制备纳米晶态Mg2Ni合金,粒径在10nm以下,有团聚现象。研究了Mg2Ni纳米氢化物电极在不同温度下的电化学性能,并从热力学角度就Mg2Ni纳米氢化物电极的某些高温电化学性能进行了解释和推测。实验结果表明:在30~70℃范围内,随着温度增加,氢化物电极的电化学容量逐渐增加,在70℃时电化学容量可达530.5mAh/g,约为30℃放电容量273.2mAh/g的2倍,Mg2Ni纳米氢化物电极具有较好的高倍率放电性能及大电流充放电性能,这表明机械合金化方法制备的Mg2Ni纳米氢化物电极具备电动车用大型MH/Ni电池负极材料的初步条件,但容量衰减严重。  相似文献   

7.
采用XRD、SEM-EDS等方法对Ti0.4Zr0.1V1.1Mn0.5Ni0.4Crx(x=0,0.1,0.2,0.3)储氢合金的微观结构及电化学性能进行了表征。XRD分析结果表明Ti0.4Zr0.1V1.1Mn0.5Ni0.4Crx(x=0,0.1,0.2,0.3)储氢合金由BCC结构的V基固溶体主相和少量的C14Laves第二相组成。SEM-EDS分析结果表明,V基固溶体主相为树枝晶结构,C14Laves相呈网格状沿着主相晶界析出。电化学测试结果表明,Ti0.4Zr0.1V1.1Mn0.5Ni0.4Crx(x=0,0.1,0.2,0.3)氢化物电极在303K下,随Cr含量的增加,最大放电容量分别为574.6mAh/g、418.8mAh/g、368.8mAh/g和322.9mAh/g。当x=0.3时,合金电极在333K下的最大放电容量达到了824.1mAh/g。Cr的添加显著提高了合金电极的高倍率放电性能和循环寿命,40次充放电循环后Ti0.4Zr0.1V1.1Mn0.5Ni0.4Cr0.3合金电极的容量保持率为62.3%。  相似文献   

8.
对商用MmMn0.4Co0.7Al0.3Ni3.4贮氢合金中添加多壁碳纳米管(CNTs)、Ni的电化学性能进行了研究.结果表明,CNTs的加入可以提高电极的放电容量和初始活化性能,合金中添加CNTs、CNTs+Ni的电极完全活化只需11个循环,其最大放电容量分别为255、271mAh/g.而添加Ni的电极则需24个循环才达到最大容量(245mAh/g);合金中添加CNTs、CNTs+Ni的电极具有更高的放电平台和更好的高倍率放电性能(HRD),在1000 mAh/g放电电流下,添加CNTs、CNTs+Ni、Ni以及未添加电极的HRD值依次为80.5%、83.9%、66.9%和62.4%,线性极化和电化学阻抗测试表明,CNTs的加入可有效减少欧姆电阻、提高电极表面的电荷迁移速率,更有利于在大电流下进行放电.  相似文献   

9.
对商用MmMn0.4Co0.7Al0.3Ni3.4贮氢合金中添加多壁碳纳米管(CNTs)、Ni的电化学性能进行了研究.结果表明,CNTs的加入可以提高电极的放电容量和初始活化性能,合金中添加CNTs、CNTs+Ni的电极完全活化只需11个循环,其最大放电容量分别为255、271mAh/g.而添加Ni的电极则需24个循环才达到最大容量(245mAh/g);合金中添加CNTs、CNTs+Ni的电极具有更高的放电平台和更好的高倍率放电性能(HRD),在1000mAh/g放电电流下,添加CNTs、CNTs+Ni、Ni以及未添加电极的HRD值依次为80.5%、83.9%、66.9%和62.4%,线性极化和电化学阻抗测试表明,CNTs的加入可有效减少欧姆电阻、提高电极表面的电荷迁移速率,更有利于在大电流下进行放电.  相似文献   

10.
王仲民  周怀营  顾正飞  成刚  朱敏 《功能材料》2004,35(3):322-323,327
球磨Mg2Ni合金粉和Ni粉制得纳米Mg2Ni-Ni非晶合金。用XRD和SEM分析表征了球磨过程中的相和结构的变化。模拟电池测试结果表明,Mg2Ni/Ni复合粉的首次放电容量随球磨时间的延长有明显提高。当球磨150h形成了纳米Mg2Ni-Ni非晶合金,其放电容量和电极循环性能得到明显改善。  相似文献   

11.
ZrTi-V-Mn-Ni系贮氢合金的相结构与电化学性能研究*   总被引:2,自引:1,他引:1  
文明芬  翟玉春  陈廉  佟敏 《功能材料》2001,32(4):379-381
优化合金组成,设计六种锆基AB2型贮氢合金材料。XRD分析表明,当0≤x≤0.5时,Zr1-xTix(NiCoMnV)2.1贮氢合金的主相都是Laves C15,但随Ti含量的增加,Laves C14相含量增多;当用V-Fe(85.6%)合金代替Zr0.6Ti0.4(NiCoMn-VFeCr)1.7中的V时,贮氢合金中Laves C14相的含量几乎可与Laves C15相当。电化学测试表明:Zr0.9Ti0.1(NiCoMnV)2.1贮氢电极的放电容量可达340mAh/g左右,但是随着Ti含量的逐渐增加,合金电极的放电容量降低很快。以适量的(V-Fe)合金取代Zr0.6Ti0.4(NiCoMnVFeCr)1.7合金中的V和Fe,发现合金电极的第一次放电容量就能达到200mAh/g左右,并且其容量稍高于含纯V的合金电极,容量可达315mAh/g左右。  相似文献   

12.
Zr0.9Ti0.1(Ni,Co,Mn,V)(2.1) as-cast alloy was prepared by melting under Ar atmosphere; and then, four composite alloys were prepared by ball-milling after hydrogen absorbing agent was added. The initial discharge capacity was as high as 430 mAh .g(-1) for composite alloy electrode c discharged at 60 mA .g(-1) current density and its maximum capacity reached 505 mAh .g(-1). All composite alloy electrodes have good activation behavior, being fully activated in one or two cycles. At 300 mA .g(-1) current density, the composite alloy electrode c was found to have good cycle stability.  相似文献   

13.
将Ni50Ti50单质混合粉末经机械合金化形成非晶态合,再进一步球磨使其产生晶化。结果表明,晶化产物为Ni3Ti金属间化合物。当Ni50Ti50非晶体加热时,产生的晶化产物有NiTi,NiTi2和Ni3Ti三种金属间化合物。本文通过DSC差热分析,测定了Ni50Ti50非晶合金的晶化热及晶化激活能,并讨论了过度球磨时非晶晶化机制。  相似文献   

14.
使用双辊淬冷技术制备了LaNi5基AB5型贮氢合金,用扫描电镜和X射线衍射确定合金的晶粒尺寸,用恒电流充放电方法确定合金的电化学容量及其循环稳定性.结果表明, 制备的合金具有均匀的纳米晶结构;在64mA/g(约0.2C)的电流密度下,合金放电容量高达336mAh/g,而在640mA/g(约2C)的电流密度下,合金放电容量仍达312mAh/g,经400次循环后容量保持约80%.另外,还研究了La含量对合金容量和循环稳定性的影响,合金容量在La 含量<60%范围内,随La含量增加而增加,La含量从60%增至80%,合金容量保持不变, 但是合金循环稳定性随La含量增加而减少.  相似文献   

15.
系统研究了LaMgNi3.7M0.3(M=Ni、Al、Mn、Co、Sn、Cu)合金的组织结构和电化学性能。XRD和电子探针显微分析(EPMA)结果表明:该系列合金主相均为LaMgNi4相,其中含Mn、Cu和Co元素在LaMgNia合金相中有一定的固溶度,LaMgNi3.7Sn0.3合金中的Sn元素主要以LaNiSn相析出;XRD全谱拟合分析表明:LaMgNi3.7Al0.3中Al元素主要占据在LaNi5相的3g位置。合会化元素在LaMgNi4相中的固溶度从大到小的顺序是Mn〉Cu〉Co〉Al〉Sn。电化学实验表明,该系列合金经1~3次循环即可活化,最大放电容量由245.2mAh/g(M=Sn)变化至293.2mAh/g(M=Co),但合金电极的循环稳定性均较差。合金电极的高倍率放电性能(HRD900%)从大到小依次为Al〉Sn〉Cu〉Mn〉Ni〉Co,其中氢原子在合金中的扩散时合金电极的高倍率放电性能起主要作用。  相似文献   

16.
In this study, Sm was adopted in order to completely replace the expensive Pr/Nd elements in the A2B7 type alloy. The results indicate that Sm is a favourable element for forming Ce2Ni7 type and Ce5Co19 type phases. With the increasing amount of Sm, the discharge capacity of the alloy retains a value of 283·3 mAh g?1 at the current density of 1200 mA g?1. The maximum discharge capacity of the alloys increases with the increasing Sm content when Mg content is relatively low. By optimising the composition and processing technology, the cycle life the alloy enhances from 74 cycles to more than 540 cycles, and the maximum discharge capacity also increases from 300 to 355 mAh g?1.  相似文献   

17.
The electrochemical characteristics of Mg2Ni-Ni alloys prepared by mechanical alloying (MA) using a planetary ball mill were investigated. The discharge capacity depends on the molar ratio in Ni andMg2Ni, and it has a maximum value of about 480 mAh/g at the equimolar ratio of Ni/Mg2Ni. This discharge capacity (480 mAh/g) is about 74% of the theoretical one. The discharge capacity is reduced to about half within five cycles. Thus, the cycle time would be improved by inhibiting the oxidation of Mg2Ni.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号