首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
机械合金化制备Nd60 Fe20 Al10 Co10非晶粉末的研究   总被引:1,自引:0,他引:1  
鲁小川  徐晖  阳松平  董远达 《功能材料》2003,34(6):647-648,651
利用机械合金化制备Nd60Fe20Al10Co10非晶粉末,采用X射线衍射(XRD)和振动样品磁强计(VSM)研究Nd60Fe20Al10Co10非晶的形成过程、磁性能变化及其与成分结构的关系。结果表明,90min后Al原子溶入Nd原子形成固溶体。球磨2h后出现少量非晶,20h后Co单质和Nd单质消失.组织为非晶相(含少量的α-Fe)。球磨100h最终得到非晶 少量的α-Fe纳米晶。球磨过程中,矫顽力随着合金中非晶的量增加而升高.球磨20h矫顽力达到43kA/m。Nd60Fe20Al10Co10合金具有硬磁性是由于非晶相的存在而造成的。  相似文献   

2.
Ln0.6Sr0.4 FeO3-δ(Ln=La、Nd、Ce)阴极材料的制备与表征   总被引:3,自引:0,他引:3  
以甘氨酸-硝酸盐水溶液为前驱体合成了Sr掺杂的稀土铁酸盐Ln0.6Sr0.4FeO3-δ(Ln=La、Nd、Ce)粉体.对制备过程的化学键变化、样品的热稳定性、物相形成过程及导电性进行了表征.结果表明,甘氨酸-硝酸盐合成法成相温度低于1000℃.坯体烧结较粉状样品更有利于钙钛矿物相的形成,La0.6Sr0.4FeO3-δ及Nd0.6Sr0.4FeO3-δ坯体1000℃煅烧2h即可形成近乎单一的钙钛矿相(ABO3);Ce0.6 Sr0.4 FeO3-δ是CeO2立方萤石相和产物钙钛矿相共存,两相难分主次.合成样品低温下的导电行为符合小极化子导电机制;1200℃烧结的La0.6Sr0.4FeO3-δ样品在测试全温度范围内(450~800℃)电导率超过100S/cm,Nd0.6Sr0.4FeO3-δ在中温区(600~800℃)电导率>60S/cm;Ce0.6Sr0.4FeO3-δ样品的电导率不理想.  相似文献   

3.
孙本哲沈铁  刘丽荣 《功能材料》2007,38(A03):1100-1103
运用X射线衍射和透射电子显微分析等方法,探讨了稀土掺杂元素Ho对La0.7Sr0.3MnO3庞磁阻材料微观结构的影响。对于La0.7-xSr0.3MnO3庞磁阻材料,Ho含量较低时(x=0.2),材料主要由典型的菱面体钙钛矿相(La0.7Sr0.3MnO3)和六角非钙钛矿相(HoMnO3)组成,还伴随有少量钙钛矿型正交点阵结构出现。当Ho掺杂量较高时(x=0.6),菱面体体积分数明显降低,而六角相显著增多。另外,稀土Ho的增多引起了菱面体单胞点阵参数(α和c)的缩短,这主要是由于菱面体单胞结构中La/Sr原子比例变小而导致的。同时,Ho的掺杂也降低了材料的晶粒尺寸。  相似文献   

4.
在表面活性剂CTAB水溶液中添加硝酸盐溶液,并滴加氨水,采用水热合成法在180℃的温度下反应9h,制备了La0.7Sr0.3FeO3前驱体,在700℃下煅烧6h后得到La0.7Sr0.3FeO3纳米颗粒组装的纳米线。利用SEM、TEM和XRD对其形貌、尺寸和结构等进行了表征。制备的La0.7Sr0.3FeO3纳米线是由约为20nm的纳米颗粒组装而成的,纳米线的最大长径比达100以上。通过改变水热合成时间和前驱体的煅烧温度等实验条件,对La0.7Sr0.3FeO3纳米线的物相转化和生长机理进行了分析。表面活性剂CTAB作为生长控制剂和颗粒凝聚载体,能够控制材料沿着轴向生长,形成纳米线。  相似文献   

5.
以金属醇盐和无机盐为原料,用溶胶-凝胶法合成了CaCu3Ti4O12干凝胶,进一步将干凝胶磨粉后在不同的温度煅烧不同的时间,得到相应的粉体样品.X射线衍射结果显示,75O℃煅烧2h后的样品呈明显的CaCu3Ti4O12(CCTO)类钙钛矿晶相,表明样品经历非晶相向类钙钛矿晶相转化过程.红外和拉曼谱分析进一步证实了X射线衍射结果.热分析研究结果也表明,在不到300℃,有机物燃烧完毕,随着温度的继续升高,到750℃样品开始向类钙钛矿相转化,直到1000℃完全生成了类钙钛矿晶相,经750、850、1000℃煅烧的样品其Raman光谱大致相同。  相似文献   

6.
用溶胶一凝胶方法制备了纳米多晶La0.7Sr0.3MnO3样品.测量了不同温度下烧结的样品的零场冷却交流磁化率与温度和直流磁场的依赖关系.通过对铁磁-顺磁转变点附近临界峰的分析,得到973K烧结的多晶样品居里温度为312.1K±0.2K,临界指数为:δ=3.040,γ=1.007,β=0.493;1173K烧结的多晶样品居里温度为331.7K±0.1K,临界指数分别为:δ=2.950,γ=0.993,β=0.508.两组数据均与平均场理论预言结果一致,表明纳米多晶La0.7Sr0.3MnO3样品在磁性相变点附近存在长程相互作用.  相似文献   

7.
用溶胶-凝胶法制备了La0.7-xNdxBa0.3MnO3(x=0,0.05,0.10,0.15,0.20,0.25)多晶纳米颗粒,用XRD分析其相结构并计算晶格常数,用VSM测量样品的磁性能并计算磁熵变和居里温度.结果表明,La-Ba-Mn-O系列中适当的Nd掺杂可调整材料的居里温度至室温附近并有效提高其磁熵变.文中对于Nd掺杂对居里温度和磁熵变影响的机理进行了定性的分析.  相似文献   

8.
高能球磨技术是一种有效的合成非晶质材料、纳米材料的方法,本研究利用高能球磨技术制备了Ag2S含量为80%的非晶质快离子导电材料,研究表明:当研磨时间为12~20h可导致非晶质相的形成.这种非晶质材料具有很高的电导率,其中20h研磨样品的室温电导率最高,为296×100Sm-1.进一步研磨致使部分Ag8SiS6晶体相析出,材料的电导率有所下降.利用直流极化技术对这些样品电子电导率测定结果表明:非晶质样品、(研磨时间长于27h的)复相样品以及Ag8SiS6晶体的银离子迁移率为1.  相似文献   

9.
采用固相法合成Ba1-x Srx Co0.7Fe0.2Nb0.1O3-δ(x=0、0.1、0.2、0.3、0.4)阴极材料。利用X射线衍射(XRD)和扫描电子显微镜(SEM)对其结构和微观形貌进行了表征。XRD测试结果表明Ba1-x Srx Co0.7Fe0.2Nb0.1O3-δ样品经1000℃,烧结10 h后形成了立方钙钛矿结构。从样品的电镜照片看出样品具有均匀的孔隙率,电解质(Ce0.85Sm0.15O1.925)-阴极(Ba1-x Srx Co0.7Fe0.2Nb0.1O3-δ)之间的界面结合良好。电化学交流阻抗测试结果表明Ba1-x Srx Co0.7Fe0.2Nb0.1O3-δ中掺入Sr可以明显地降低阴极的极化电阻,随着Sr含量的增多,阴极的界面极化电阻(RP)先减少后增大,当Sr的含量x为0.2时Rp值最小。以Ce0.85Sm0.15O1.925(SDC)电解质为支撑体,Ni0.9Cu0.1-SDC为阳极,Ba0.8Sr0.2Co0.7Fe0.2Nb0.1O3-δ为阴极的单电池的最大功率密度在600℃时达到155 mW/cm2。实验结果表明Ba0.8Sr0.2Co0.7Fe0.2Nb0.1O3-δ材料是一种电化学性能较为优良的中温固体氧化物燃料电池阴极材料。  相似文献   

10.
提出一种跟踪钙钛矿锰氧化物各个制备环节的热重分析方法,用以确定在制备过程中的样品质量损失情况.利用溶胶-凝胶法,成功制备了名义成分为La0.7Sr0.3-xAgxMnO3与La0.6Sr0.1Te0.2MnO3钙钛矿锰氧化物材料.利用精度为0.0001g的电子天平分别称量了经不同温度热处理后样品的剩余质量.仔细排除可能...  相似文献   

11.
O. Khamman 《Materials Letters》2007,61(13):2822-2826
A perovskite phase of lead zirconate, PbZrO3, nanopowder was synthesized by a solid-state reaction via a rapid vibro-milling technique. The effect of milling time on the phase formation and particle size of PbZrO3 powder was investigated. Powder samples were characterized using TG-DTA, XRD, SEM and laser diffraction techniques. It was found that an average particle size of 50 nm was achieved at 25 h of vibro-milling after which a higher degree of particle agglomeration was observed upon continuation of milling to 35 h. In addition, by employing an appropriate choice of milling time, a narrow particle size distribution curve was also observed.  相似文献   

12.
Effect of calcination conditions on phase formation and particle size of lead zirconate (PbZrO3) powders synthesized by a solid-state reaction with different vibro-milling times was investigated. A combination of the milling time and calcination conditions was found to have a pronounced effect on both the phase formation and particle size of the calcined PbZrO3 powders. The calcination temperature for the formation of single-phase perovskite lead zirconate was lower when longer milling times were applied. The optimal combination of the milling time and calcination condition for the production of the smallest nanosized (∼28 nm) high purity PbZrO3 powders is 35 h and 750 °C for 4 h with heating/cooling rates of 30 °C/min, respectively.  相似文献   

13.
Nanosized bismuth titanate was prepared via high-energy ball milling process through mechanically assisted synthesis directly from their oxide mixture of Bi2O3 and TiO2. Only Bi4Ti3O12 phase was formed after 3 h of milling time. The excess of 3 wt% Bi2O3 added in the initial mixture before milling does not improve significantly the formation of Bi4Ti3O12 phase comparing to stoichiometric mixture. The formed phase was amorphized independently of the milling time. The Rietveld analysis was adopted to determine the crystal structure symmetry, amount of amorphous phase, crystallite size and microstrains. With increasing the milling time from 3 to 12 h, the particle size of formed Bi4Ti3O12 did not reduced significantly. That was confirmed by SEM and TEM analysis. The particle size was less than 20 nm and show strong tendency to agglomeration. The electron diffraction pattern indicates that Bi4Ti3O12 crystalline powder is embedded in an amorphous phase of bismuth titanate. Phase composition and atom ratio in BIT ceramics were determined by X-ray diffraction and EDS analysis.  相似文献   

14.
Strontium doped perovskite-type Nd0.7Sr0.3MnO3 ceramics were synthesized completely by high-energy ball milling raw oxides of Nd2O3, SrCO3 and MnO2. The optimal ball milling time and mass ratio of milling balls to raw materials are 4 h and 10:1, respectively. The grain size of as-milled Nd0.7Sr0.3MnO3 ceramics ranges from 51 to 93 nm, and the fine particles contain two phases of crystalline phase and amorphous phase. For the Nd0.7Sr0.3MnO3 synthesized by ball milling and sequent heat treatment, a remarkable...  相似文献   

15.
Nanosized PZN-BT powders were synthesized directly from their constituent component oxide mixture via a high-energy ball milling process. XRD patterns showed that perovskite phase could be formed after milling for 5 h, while single phase perovskite was achieved when the milling was prolonged for 12 h. Further increase in milling time (20 h) led to the formation of pyrochlore phase. PZN-BT ceramics were obtained by sintering the milled powders at temperatures from 1000 to 1100°C for 1 h. The 1100°C-sintered PZN-BT samples derived from the 12 h milled powders have a density of ∼99% of the theoretical density with an average grain size of about 4 μm, a dielectric constant of 2300 and a dielectric loss of 0.03, being in good agreement with the reported results for PZN-BT prepared by the conventional solid-state reaction process.  相似文献   

16.
Amorphization of Mn carbides by rapid quenching method has been proved to be unsuccessful.By mechanical milling in the present work, amorphous phases have been formed in the perovskitetype Mn3AlC compound. The transformation process from crystalline to amorphous phase was found to be milling time controlled, and 10 h is a critical period for the macroscopically single amorphous phase to form. It has been clarified that the redistribution of C atoms is an instinctive factor for amorphous phase to nucleate, and the atomic configuration in the amorphous phase is changed much in longer milling that different crystallizing behaviours have been caused. With X-ray diffraction and differential scanning calorimetry (DSC) results, an atomic configuration transition model is considered for the structures of the amorphous phases changed during milling.  相似文献   

17.
《Materials Letters》2006,60(21-22):2666-2671
Effect of calcination conditions on phase formation and particle size of lead titanate (PbTiO3) powders synthesized by a solid-state reaction with different vibro-milling times was investigated. Powder samples were characterized using XRD, SEM, TEM and EDX techniques. A combination of the milling time and calcination conditions was found to have a pronounced effect on the phase formation and particle size of the calcined PbTiO3 powders. The calcination temperature for the formation of single-phase perovskite lead titanate was lower when longer milling times were applied. More importantly, by employing an appropriate choice of the milling time and calcination conditions, perovskite lead titanate (PbTiO3) nanopowders have been successfully prepared with a simple solid-state reaction method.  相似文献   

18.
Abstract

The microstructural evolution during mechanical alloying of Ti and Al powders has been investigated by X-ray diffraction, scanning electron microscopy (SEM)–energy dispersive spectroscopy, and transmission electron microscopy (TEM). Observations by SEM showed a progressive change of the powders' morphology as a function of milling time. Observations by TEM, performed on a sample milled for 20 h, revealed the simultaneous occurrence of amorphous zones and nanocrystalline domains. The observed amorphous phase is not the final milling product. After 34 h of milling it was possible to identify by TEM fcc (a=0·41 nm) nanocrystalline zones, with a mean size of about 10 nm. By irradiating the powder milled for 20 h with high density electron beams, a sudden in situ crystallisation took place. The crystallite (fcc with a=0·41 nm) size was between 0·1 and 0·5 μm.

MST/1281  相似文献   

19.
A columbite-type phase of nickel niobate, NiNb2O6, nanopowder was synthesized by a solid-state reaction via a rapid vibro-milling technique. The effect of milling time on the phase formation and particle size of NiNb2O6 powder was investigated. Powder samples were characterized using DTA, XRD, SEM and laser diffraction techniques. It was found that the smallest particle size of 32 nm was achieved at 25 h of vibro-milling after which a higher degree of particle agglomeration was observed on continuation of milling to 35 h. In addition, by employing an appropriate choice of the milling time, a narrow particle size distribution curve was also observed.  相似文献   

20.
Pyrochlore-free nano-sized 0.90Pb(Mg1/3Nb2/3)O3(PMN)-0.10PbTiO3(PT) and 0.65PMN-0.35PT powders were synthesized from oxides via a high-energy ball milling process. Single perovskite phase PMN-PT were readily formed from the oxide mixture after milling for only 2 h. The grain size calculated from X-ray diffraction (XRD) patterns of all samples is about 20 nm, which is in agreement with the observation from scanning electron microscopy (SEM) (20-50 nm). PMN-PT ceramics were obtained by sintering the milled powders at temperature from 1000 to 1100°C for 2 h. The dielectric, ferroelectric properties of the PMN-PT ceramics derived from the synthesized powders were comparable with the reported results in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号