首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
仔细研究了电场感应PbZrO3铁电相的晶体结构。在PbZrO3处于反铁电相时,各离子位移方向与极轴垂直。在外电场感应下,Pb离子沿极轴方向有相同方向0.17A的位移,从而使晶体呈现铁电相特征,发生反铁电-铁电相变。此铁电相称之为电场感应铁电相(EFI,Electric—Field—Induced)。通过结构对称性分析,确定EFI铁电相的对称性是C2mm(G2v),用极矢量Ps作为序参量来描述相变时对称性的变化是合适的。  相似文献   

2.
Zr2SB、Hf2SB、Zr2Se B、Hf2Se B、Hf2Te B都是近期发现的硫族MAX相硼化物,与典型MAX相相比,具有明显不同的性质,因此备受人们关注。本文采用第一性原理并结合“线性优化法”、键刚度模型和准简谐近似研究了MAX相硼化物(M=Zr,Hf;A=S,Se,Te)的物相稳定性、力学性能和热性能。理论分析结果与目前可用的实验结果一致。经热力学和本征稳定性分析后发现,只有M2AB可以稳定存在。较短的M-A键与M-B键长使Hf系化合物的键刚度高于Zr系化合物,这也同样导致Hf系化合物的硬度高于Zr系。随着A元素由S到Se再到Te,M-B与M-A键长逐渐增加,键刚度减小导致弹性模量降低。而且,这些化合物的体积模量取决于其平均化学键刚度。更加重要的是,最弱键和最强键的刚度比(kmin/kmax)较高,显示这些MAX相硼化物不同于传统MAX相,均呈本征脆性。考虑晶格振动(声子)和电子激发的贡献后计算得到M<...  相似文献   

3.
用第一性原理的方法,利用Castep计算模块,建立TiAl晶胞模型和不同Ce浓度掺杂TiAl 2×2×2超晶胞模型,对模型进行优化后计算其电子结构、弹性及电子性质,以期从本质上揭示稀土元素Ce掺杂浓度对TiAl结构和性能的影响,为提高TiAl性能提供理论基础。计算结果表明,稀土元素Ce掺入使TiAl内部轨道杂化作用增强,共价性增强,成键方向性增加,硬度提高。Ce原子与Ti、Al原子之间成离子键,离子性增强,延性提高。随着Ce掺杂浓度的提高,TiAl延性和硬度均有所提高。  相似文献   

4.
根据余氏理论的平均晶胞模型及键能公式,分析了间隙元素对Ti-Al系α,β,γ(TiAl)相价电子结构的影响,计算了间隙元素对这些相变点温度的影响,并对一些有争议的实验结果做了解释。  相似文献   

5.
PbBr2-PbF2-P2O5玻璃的结构研究   总被引:3,自引:0,他引:3  
采用红外光谱(IR)和X射线光电子能谱(XPS)等方法研究了PbBr2-PbF2-P2O5系铅卤磷酸盐玻璃的结构。结果表明,Pb^2 离子在玻璃中起着网络修饰阳离子和网络形成体的双重作用。当P2O5含量为60mol%时,Pb^2 离子主要是作为网络修饰体;当P2O5含量降低到50mol%时,一部分Pb^2 离子能够进入玻璃网络形成[PbO4]四面体或P-O-Pb键。Br^-和F^-离子达到一定浓度时就会进入玻璃网络,形成[PO4-nXn](X=Br或F,n=0-4)四面体使磷酸盐链长变短。玻璃中P2O5的含量不变时P-O-P键的比例也基本保持不变;当P2O5的含量降低时,P-O-P键和P-O^-键的含量都减少,P-O-Pb键的含量则明显增加。  相似文献   

6.
Cr4AlB4是一种近期发现的三元层状硼化物MAB相陶瓷。该材料可形成具有保护性的氧化膜, 在高温结构材料领域有巨大应用潜力。本工作采用基于第一性原理的“线性优化法”和“键刚度”理论模型分别研究了Cr4AlB4的物相稳定性和力学行为。声子谱中没有虚频出现, 表明Cr4AlB4具有本征稳定性。而与其它Cr-Al-B系内的竞争相相比, Cr4AlB4具有最低的能量, 表明其在热力学上也是稳定的。采用“键刚度”模型对化学键刚度的定量计算显示, Cr4AlB4中Cr和B以及B和B原子之间形成了强共价键, 而Cr和Al原子则形成相对较弱的Cr-Al(625 GPa)和 B-Al(574 GPa)键。Cr4AlB4可以看成是由强共价键紧密连接在一起的Cr-B结构单元, 被弱Cr(B)-Al键分割而成的层状结构, 与MAX相结构类似。Cr4AlB4具有类似于MAX相的高损伤容限和断裂韧性。  相似文献   

7.
计算与分析了快凝Al-Fe-V-Si合金弥散纳米相基本结构单元α-(AlFeSi)的空间构型、价电子结构以及键络键能研究表明,V原子替代Fe原子可使结构稳定性增强主要原因是V原子自身的键合能力(Fα,Bα)优于Fe原子  相似文献   

8.
用X射线光电子谱(XPS)和俄歇电子能谱(AES)研究了Ti/Al_2O_3界面形成的过程。研究表明,活性金属Ti在室温下能与衬底Al2O3(1102)形成约20nm强结合的界面区。从Al,O,Ti的光电子谱形状变化以及它们随着Ti覆盖度的增加而出现结合能位移表明,在界面处形成的反应层中,最初几个单层的Ti很容易被Al2O3表面的活性氧所氧化,从而使Ti/Al2O3界面逐步由具有更强相互作用的TiOx/Al2O3界面所代替,并形成由多相混合体[Ti-O相,(Ti,Al)2O3相以及金属Al相]所组成的界面区。就是说,Ti通过Al—O键的O2-离子转移其电子给Al3 并使它还原成金属Al,从而形成Ti-O键所致。本文用AES强度剖面分析观察到了这种被还原的Al。  相似文献   

9.
用溶胶-凝胶法制备了(Pbx,Sr1-x)0.85Bi0.1TiO3薄膜,对其晶相结构、微观形貌和介电可调性进行了研究.结果表明,该薄膜以钙钛矿形式存在.快速热处理过程可分解得到高活性离子,直接形成比相应温度平衡状态析晶时更多的晶相量.这种晶相在一定条件下有分解和再结晶的趋势.随着Pb^2+离子增加和Sr^2+离子减少,钙钛矿相的四方相与立方相间的转变温度升高.薄膜处在铁电相和顺电相转变点附近时,可以获得较大的可调性.  相似文献   

10.
半化学法制备0.80Pb(Mg1/3Nb2/3)O3-0.20PbTiO3陶瓷的反应机理   总被引:4,自引:0,他引:4  
采用半化学法制备了纯钙钛矿相的0.80Pb(Mg1/3Nb2/3)O3-0.20PbTiO3(简称为0.80PMN-0.20PT)陶瓷。反应前驱体是以硝酸镁的饱和溶液代替传统氧化物混合法中的氧化镁,与PbO、Nb2O5和TiO2混合球磨得到的。该前驱体的TG-DTG-DSC和XRD分析表明,半化学法的反应机理不同于传统氧化物混合法和二次合成法的反应机理。在煅烧过程中,硝酸镁与氧化铅反应生成铅的活化中间体Pb6O5(NO3)2,由此活化的PbO或Pb3O4可与Nb2O5生成不稳定的、缺B位的焦绿石相Pb3Nb2O8,再与MgO反应生成钙钛矿相PMN-PT。  相似文献   

11.
铁电(Pb0.925La0.075)(Zr0.65Ti0.35)0.981O3薄膜的XPS分析   总被引:1,自引:0,他引:1  
本文对射频控溅射制备的(Pb0.925La0.075)(Zr0.65Ti0.35)0.981O3薄膜作了XPS全扫描和窄有谱分析。结果表明,薄膜的表面缺Pb是形成TZO相的主要原因;随着退火温度的升高,薄膜中钙钛矿相的形成导致各元素的结合能发生位移。  相似文献   

12.
基于材料基因组计划(MGI)研究方式, 利用密度泛函理论(DFT)的第一性原理的总能量计算方法, 以K2NiF4型La2BO4(B:B位元素)相关的几种相结构为计算模型, 针对4~6周期48种B位金属元素替换, 进行几何优化的总能量计算, 得到这些相关虚拟相结构的结合能随元素的变化规律。通过层状相La2BO4与立方相LaBO3的比较, 着重讨论了一些重要B位元素(Fe、Co、Ni、Cu、Zn、Se)对稳定La2BO4复合氧化物相稳定性的影响作用和趋势。结合相关的实验数据, 进一步讨论了掺杂B位元素的优化稳定区域。本定量分析方法为此类材料的合成和成份优化设计提供了一种行之有效的分析方法。  相似文献   

13.
用磁控射频溅射方法制备了Pb(Zr0.52Ti0.48)O3薄膜。研究了制膜工艺对Pb(Zr0.52Ti0.48)O3薄膜相、结晶性和铁电特性的影响。实验表明,所制备的薄膜表面致密、光滑。此Pb(Zr0.52Ti0.48)O3薄膜以钙钛矿结构为主,并具有较高的剩余极化、饱和极化和较小的矫顽场。从实验结果分析得,通过控制工艺条件所制得的单相钙钛矿型的Pb(Zr0.52Ti0.48)O3薄膜的铁电特性得到很大提高。并制备出用于永久性存贮器的优质Pb(Zr0.52Ti0.48)O3薄膜。  相似文献   

14.
表面稳定铁电液晶器件特性的PSPICE模拟研究   总被引:3,自引:0,他引:3  
以铁电液晶(FELC)等效电路模型为基础,通过开发Pspice光合混合系统模块,灵活地调整多种时序脉冲及驱动源波形,优化FELC晶胞厚度,面积,粘滞系数,入射偏振角和自发极化强度等结构参数,成功地实现了FELC开关响应,记忆和存储特性的动态模拟,也为其他光子器件和混合集成系统的EDA仿真研究做了技术铺垫。  相似文献   

15.
利用基于密度泛函理论的第一性原理平面波超软赝势方法对Cr/S共掺杂锐钛矿相Ti O2的晶格参数、能带结构、电子态密度、电荷密度以及吸收光谱进行了计算。计算结果表明:Cr/S共掺杂使锐钛矿相Ti O2的晶胞体积变大;相比于未掺杂锐钛矿相Ti O2,Cr/S共掺杂锐钛矿相Ti O2的禁带宽度增大0.20e V,达到2.40e V,但Cr/S共掺杂并未造成锐钛矿相Ti O2吸收边的蓝移,反而是存在于锐钛矿相Ti O2禁带之内的掺杂能级导致其吸收边的红移。本文为实验上Cr/S共掺杂提高Ti O2的光催化活性提供了一定的理论基础。  相似文献   

16.
采用基于密度泛函理论的赝势平面波方法,对掺Mn的β-Fesi2的几何结构和电子结构进行了计算。计算表明:(1)杂质的掺入改变了晶胞体积及原子位置,掺杂是调制材料电子结构的有效方式;(2)在β-FeSi2中掺入杂质时掺杂原子的置换位置具有择位性,Mn掺杂时倾向于置换FeI位的Fe原子;(3)能带结构计算表明:掺Mn使得β-FeSi2的费米面向价带移动,形成了P型半导体。  相似文献   

17.
PMN铁电陶瓷B位有序与介电弛豫特性研究   总被引:1,自引:1,他引:0  
本文采用退火热处理及掺入La3+离子两种方法,利用高分辨透射电镜、选区电子衍射、X射线衍射等技术对B位离子有序结构与介电弛豫性能的关系进行分析.研究表明,B位离子有序化是直接提高弥散相变(DPT)程度的原因,其机理是离子扩散,存在扩散平衡.退火仅能提高有序度,无法改变有序区尺寸;通过La3+离子掺杂,可有效提高有序区域大小,由于是非化学计量比,造成Nb5+离子在无序区中过度富集,形成焦绿石相.  相似文献   

18.
非金属阳离子掺杂锐钛矿相TiO2的第一性原理研究   总被引:1,自引:0,他引:1  
采用基于第一性原理的平面波超软赝势方法研究了非金属阳离子掺杂锐钛矿相TiO2的晶体结构、杂质形成能、电子结构及光学性质.计算结果表明掺杂后发生的晶格畸变、原子间的键长及原子的电荷量的变化,导致了晶体中的八面体偶极矩增大,使光生电子-空穴对能有效分离; 掺杂离子的p态电子与O2p态、Ti3d态杂化形成杂质能级、价带宽化,从而导致TiO2的禁带宽度变窄、光吸收曲线红移到可见光区.这些计算结果很好地解释了非金属阳离子掺杂锐钛矿相TiO2在可见光下具有优良的光催化性能的内在原因.  相似文献   

19.
铁电材料的晶体在一定的温度范围内具有自发极化,而且其自发极化方向可以因外电场方向的反向而反向,它具有铁电性、热释电性、压电性、介电性及以光电效应、声光效应、光折变效应和非线性光学效应等特性,在铁电存储器、红外探测器、空间光调制器、介电热辐射测量器及光学传感器等方面有重要应用。铁电材料及其应用研究已成为凝聚态物理和固体电子学领域最热门的研究课题之一。当前在压电、超导、磁电阻、催化、离子导体等多种功能材料中,具有钙钛矿结构的材料占重要比例,因此钙钛矿结构材料也是当前材料科学研究领域的热点之一。在铁电材料中,钙钛矿型铁电体材料是电子陶瓷中使用最广泛的材料。与温度一样,压力也是决定物质存在状态和导致材料的结构与性能变化的基本热力学要素之一。在压力的作用下,材料内部原子之间的相互作用非常复杂,并且表现出与常压下迥异的性质,因此常压下的理论不一定能解释高压下的现象。多年来,研究者们一直致力于探索高压下物质的行为并揭示其中的物理现象和规律。超高压对铁电材料的结构和性能的影响也是人们一直研究的热点。在超高压下对铁电材料进行X射线衍射、拉曼光谱、中子散射分析及第一性原理理论计算,结果表明,压力能使铁电材料的对称性升高,空间群自由度减少,结构变得更规则,从而引发自发极化减少,导致铁电性能降低,铁电材料的晶体结构由铁电相逐渐转变为顺电相,铁电材料最终变为顺电材料。近年来,对铁电材料在更高压力下的研究发现,在超高压下铁电材料出现一个有趣的现象。随着压力的增加,一些铁电材料的铁电性逐渐降低,但超过某个临界值后,铁电性能有很大的提高,铁电性重新出现。本文综述了钙钛矿铁电体BaTiO_3、PbTiO_3、KNbO_3、复合铁电体BiFeO_3-PbTiO_3、弛豫铁电体Pb(Zn_(1/3)Nb_(2/3)) O_3和Pb(Mg_(1/3)Nb_(2/3)) O_3、BaTiO_3/PbTiO_3超晶格在超高压下晶体结构随压力的变化和铁电重现现象,使研究者们对铁电材料的结构和性能随压力的变化有全面的理解,以期为铁电材料的铁电机理研究提供参考,为未来新的钙钛矿铁电体的研究和制备提供理论依据和新的途径。  相似文献   

20.
利用sol-gel法并通过原位复合方法制备了具有铁电性能的PbTiO3和具有铁磁性能的NiFe2O4和PbF12O19多相复合体系陶瓷粉体。利用XRD、SEM对多相复合体系的物相结构和形貌等进行研究。结果表明,在700℃以上则形成铁电(PbTiO3)/(NiFe2O4和PbF12O19)三相复合体系。热处理温度对多相复合体系晶相的形成和生长产生关键性作用,多相复合共存体系中形成的晶相多以固溶体存在,各固溶晶相的晶格常数随固溶量的不同而不同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号