首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
本文用溶胶-凝胶自燃烧法制备了Ni0.5Zn0.5Fe2O4粉末颗粒,以甲醛为还原剂在Ni0.5Zn05Fe2O4颗粒表面进行了化学镀铜,制备了Cu/Ni0.5Zn0.5Fe2O4复合粉体.用扫描电镜(SEM)、能谱仪(EDS)和X射线衍射仪(XRD)对镀铜前的Ni0.5Zn0.5Fe2O4颗粒以及镀铜后的复合纳米颗粒进行了表征.对镀铜前的Ni0.5Zn0.5Fe2O4粉体和不同镀铜量的Cu/Ni0.5Zn0.5Fe2O4复合粉体进行了电磁性能的研究,结果表明镀铜后镍锌铁氧体的吸波性能明显提高,增重量为65%的Cu/Ni0.5Zn0.5Fe2O4复合粉体在频率为11GHz处反射率可达-12dB左右.  相似文献   

2.
通过固相合成法制备(1-x)Na0.5Bi0.5TiO3-xBaTiO3(x=0.02,0.06)(BNT-BT)无铅压电陶瓷.通过SEM、XRD等手段对粉体合成过程进行了分析与表征,并利用HP4294网络分析仪、d33准静态测试仪等对固相合成法制备的BNT-BT进行了相关性能研究.粉体的预烧温度为950℃,BNT-BT陶瓷的烧结温度为1150℃。结果表明当x=0.02时,密度为6.01g/cm^3,达到理论密度的99%.d33=122×10^-12C/N.  相似文献   

3.
马广斌  朱正吼  夏小鸽 《材料导报》2006,20(Z2):196-197
采用高能球磨法制备了纳米Al2O3p/Cu复合材料粉体,复合粉体经过压制、烧结和挤压后成为铜复合材料,采用X射线衍射(XRD)、扫描电镜(SEM)、能谱仪(EDS)、电导仪等测试方法,研究了球磨后的复合粉体和复合材料显微结构、电导率和硬度.实验证明,粉体经过2h以上球磨后,Al2O3相逐渐消失,复合粉体为纳米晶结构,晶粒直径66~87nm.随着Al2O3粉体含量增加,铜复合材料的电导率显著下降.烧结后挤压有利于复合材料导电性能的提高.当Al2O3粉体含量1wt%、球磨6h时,烧结后重新挤压的复合材料试样电导率IACS 76%、硬度HB 83.8.  相似文献   

4.
采用微波水热法合成了纳米晶钛酸锶钡(Ba0.5Sr0.5TiO3)粉体,通过XRD、TEM、SEM等分析手段表征粉体,研究了微波水热合成反应温度、时间和前驱物浓度对反应产物形貌、粒度的影响,获得了制备纳米晶钛酸锶钡粉体的最优工艺参数.实验结果表明:在微波水热反应温度为195℃、反应时间20~30min、前驱物浓度为0.16mol/L时获得的粉体粒径小而且均匀,粉体平均粒度为60nm.  相似文献   

5.
采用熔融挤出的方法制备了锂皂石/LiCl/尼龙6(PA6)复合材料,研究了锂皂石质量分数对LiCl/PA6复合材料结构与性能的影响,同时探讨了络合反应对锂皂石在基体中分散的影响。DSC和XRD研究发现:锂皂石的加入有利于复合材料结晶,但锂皂石/LiCl/PA6复合材料的结晶度都比LiCl/PA6复合材料的结晶度低,在锂皂石质量分数为5%时,锂皂石/LiCl/PA6复合材料的结晶度最大,且此时复合材料的拉伸强度和弯曲强度也达最大值,分别为99.17 MPa和154.17 MPa。由TEM观察到当锂皂石质量分数为5%时,锂皂石主要以插层方式均匀分布在基体中,部分呈现剥离的状态。此外,动态流变Han曲线表明:锂皂石/LiCl/PA6复合材料的黏性响应占主导地位。当锂皂石质量分数高于5%时,由于锂皂石团聚,无机相和有机相具有不同的松弛状态,导致共混物熔体的Cole-Cole曲线出现严重拖尾现象。将锂皂石加入LiCl/PA6复合材料既保持了低熔点的特性又表现出优异的力学性能,因此锂皂石起到了明显的增强作用。   相似文献   

6.
基于自制Zr0.5Hf0.5C先驱体和商业化液态聚碳硅烷,通过先驱体浸渍裂解(PIP)工艺成功制备C/Zr0.5Hf0.5C-SiC复合材料,研究纤维表面热解C涂层厚度对复合材料微观结构及弯曲性能的影响。结果表明:自制Zr0.5Hf0.5C先驱体在1400℃下即可转化生成单一Zr0.5Hf0.5C固溶体。因具有良好的渗透性,转化生成的Zr0.5Hf0.5C基体同时存在于C/Zr0.5Hf0.5C-SiC复合材料的纤维束内和束间,呈包裹SiC基体的层状形貌。C/Zr0.5Hf0.5C-SiC复合材料主要由C,SiC和Zr0.5Hf0.5C相组成;具有不同热解C涂层厚度(0.67,0.84,1.36μm)的3组复合材料密度分别为2.07,1.9...  相似文献   

7.
采用高温固相法合成具有高离子电导率的固体电解质Li0.5La0.5TiO3(LLTO),并以LLTO为母体,通过复合非活性第二相SiO2制得一系列不同复合量的复合电解质。对样品进行XRD、SEM分析,并应用交流阻抗技术测试其电导率。母体LLTO为存在超结构的立方晶体,30℃时晶粒电导率为8.2×10^-4S/cm。两相复合后,SiO2以无定形相析出,样品中明显存在两相,在两相之间生成含有硅元素的新相,使晶界电导率明显提高,其中,在130℃时,LLTO复合15%(体积分数)SiO2样品的晶界电导率为5.02×10^-3S/cm,相对于纯LLTO样品提高了2.4倍。  相似文献   

8.
朱刚强  苗鸿雁  谈国强  仇越秀 《材料导报》2005,19(Z1):147-149,154
以Bi(NO3)3·5H2O、Ti(OC4H9)4、KOH为原料,研究和分析了水热条件下纳米K0.5Bi0.5TiO3(KBT)粉体和影响KBT晶体生长与形成的各个影响因素,并利用XRD、TEM、ED等分析方法对所得粉体的晶相、微观形貌、分散性等性质进行了表征.结果表明,反应温度为180℃,保温时间为24h,KOH浓度为4~12mol/L时能制备出纯净的、结晶完整、分散性良好、钙钛矿型的纳米K0.5Bi0.5TiO3晶体,其颗粒尺寸为15~75nm.  相似文献   

9.
采用机械合金化与电场压力激活辅助烧结工艺相结合的方式,分别制备纯Al和GNPs/Al复合材料,探究粉体石墨烯对铝基复合材料微观结构和性能的影响。结果表明:通过优化烧结工艺有效地抑制化合物Al_4C_3在GNPs/Al复合材料中的形成,提高石墨烯与Al基体的界面结合强度。石墨烯添加量为0.5wt.%时,在Al基体晶界处能够均匀的分散,由于石墨烯与Al基体有良好的界面润湿性,促进声子在基体材料中的移动,降低材料的界面热阻,在GNPs/Al复合材料表面形成导电网络,提高电子的迁移率和平均自由程,使GNPs/Al复合材料的热导率和电导率分别提升7.1%和4%;添加石墨烯能改变Al基体材料的晶体结构,在石墨烯周围形成晶格畸变的应力场,该应力场与位错应力场产生交互作用,使位错运动受阻,GNPs/Al复合材料的强度和硬度分别提升30.6%和44%;石墨烯能降低基体材料界面电容的介电损耗,在Al基体材料表面形成致密平整的膜层,提高GNPs/Al复合材料的电荷传递电阻,降低材料表面在电化学腐蚀过程中的弥散效应,使GNPs/Al复合材料耐腐蚀性能提高31%。石墨烯含量超过0.5 wt.%时,团聚在基体晶界的石墨烯,降低复合材料的界面结合强度,使GNPs/Al复合材料导带中的能带宽度变窄,电子的局域性增强,导致GNPs/Al复合材料的性能下降。综上所述,粉体石墨烯的最佳添加量为0.5wt.%。  相似文献   

10.
杜春生  吕晓娟 《材料导报》2000,(Z10):151-152
对Sm2O3、CaO复合掺杂的CeO2基固体电解质电导性能和显微结构进行了研究。研究表明,复合掺杂有利于提高氧化铈基材料的电导率。减少Sm2O3添加量和加入CaO有利于试样中晶粒的长大,从而晶界数目较少,这种显微结构的变化可能是导致材料电导率提高的重要因素。  相似文献   

11.
BNT-BT和BNT-BKT基无铅压电陶瓷研究进展   总被引:6,自引:1,他引:5  
陈志武 《材料导报》2006,20(1):14-18
综述了Bi0.5Na0.5TiO3-BaTiO3系和Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3系无铅压电陶瓷的最新研究进展.总结了各种添加剂对这两种无铅压电陶瓷体系压电性能的影响机理和规律,介绍了当前以各种工艺对其微观结构和压电性能进行改进的研究成果,并展望了这两种无铅压电陶瓷体系的发展趋势.  相似文献   

12.
徐华  沈明荣  方亮  甘肇强 《功能材料》2004,35(5):603-605,609
采用脉冲激光沉积法,在Pt/Ti/SiO2/Si基底上分剐制备厚度为350nm的Ba0.5Sr0.5TiO3(BST)、Pb0.5Ba0.5TiO3(PBT)和Pb0.5Sr0.5TiO3(PST)薄膜并研究了它们的介电性质。XRD显示,在相同的制备条件下三者具有不同的择优取向,PST具有(110)择优取向,PBT具有(111)择优取向,而BST则是混合取向。SEM显示三者样品表面均匀致密,颗粒尺寸大约在50nm至150nm之间。PST与BST、PBT相比有更高的介电常数,在频率为10kHz时,分别为874、334和355,而损耗都较低,分别为0.0378、0.0316和0.0423,同时PST漏电流也是最小的。测量薄膜的C-V特性扣铁电性能表明室温下BST呈现的是顺电相,PST和PBT则呈铁电相。本文也测量了薄膜在不同频率下的介电温度特性,BST、PBT和PST均表现出频率弥散现象,即随着频率的降低.居里温度降低而介电常数会升高。并测得BST和PST的居里温度分剐为-75和150℃。而PBT的居里温度在250℃以上。本文研究表明:与BST相比较,PBT的介电常数与之相近,漏电流较大;而PST具有高介电常数,较小的漏电流和较大的电容-电压调谐度,在相关半导体器件中的应用将有很大的潜力。  相似文献   

13.
14.
采用传统的干压成型法制备了Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3无铅压电陶瓷,研究了不同K0.5Bi0.5TiO3含量对Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3陶瓷的微观结构与电性能的影响规律.结果表明,Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3无铅压电陶瓷随K0.5Bi0.5TiO3含量增加,晶格常数增大,密度减小,晶粒尺寸减小,压电常数先增大后减小,介电常数增大,介电损耗增加,机械品质因数下降,而居里温度不断升高,在200℃附近存在由铁电相向反铁电相转变的一个相变点,组分为0.84 Na0.5Bi0.5TiO3-0.16 K0.5Bi0.5TiO3的陶瓷位于准同型相界附近,具有最佳的压电性能.  相似文献   

15.
We have carried out systematic investigations in perovskite multiferroic La0.5Bi0.5Mn0.5Fe0.5O3 by means of X-ray diffraction, magnetisation, electrical resistivity, thermoelectric and heat capacity measurements. The magnetic behaviour of this composition is rather complex, though the magnetisation curve seems to be like a weak ferromagnetic material. However, there is no clear evidence of λ-anomaly in the heat capacity data down to 2 K, yet this behaviour corroborate the trends of semiconducting silicon below room temperature. The sensitivity of magnetic behaviour to the iron-manganese ratio is also demonstrated. In presence of an external field of 7 T, it exhibits a magnetoresistance of ?5 % at 130 K. The thermoelectric value increases linearly with decreasing temperature, and at room temperature the value is +85 μV/K, which is associated with the p-type polaronic conductivity.  相似文献   

16.
Na0.5 Bi0.5 TiO3-K0.5 Bi0.5 TiO3系铁电体的相变研究   总被引:1,自引:0,他引:1  
研究了(Na1-xKx)0.5Bi0.5TiO3体系x分别为0、0.08、0.16和0.20时陶瓷不同频率下的介电温谱,发现材料为弛豫型铁电体,材料的介电谱在室温到500℃的温度范围内存在一个介电常数-温度"台阶",一个介电常数-温度峰和一个介电损耗-温度峰,通过分析陶瓷不同温度下的电滞回线验证陶瓷在升温过程中产生了铁电-反铁电-顺电相变,采用铁电体成分起伏理论和内电场理论解释了这类弛豫型铁电体相变的原因.  相似文献   

17.
18.
We report appearance of superconductivity in CeO0.5F0.5BiS2. The bulk polycrystalline samples CeOBiS2 and CeO0.5F0.5BiS2 are synthesized by conventional solid state reaction route via vacuum encapsulation technique. Detailed structural analysis showed that the studied CeO0.5F0.5BiS2 compound is crystallized in tetragonal P4/nmm space group with lattice parameters a=4.016(3) Å, c=13.604(2) Å. DC magnetization measurement (MT-curve) shows the ferromagnetic signal at the low temperature region. The superconductivity is established in CeO0.5F0.5BiS2 at $T_{c}^{\mathrm{onset}}=2.5~\mbox{K}$ by electrical transport measurement. Under applied magnetic field, both T c onset and T c (ρ=0) decrease to lower temperatures and an upper critical field [H c2(0)] above 1.2 Tesla is estimated. The results suggest coexistence of ferromagnetism and superconductivity for the CeO0.5F0.5BiS2 sample.  相似文献   

19.
Positive delayed photoconductivity was observed for the first time in double p-type heterostructures Al0.5Ga0.5As/GaAs/Al0.5Ga0.5 As upon exposure to the radiation of a red light-emitting diode. In this state, the concentration and mobility of two-dimensional holes are increased 1.5 and 1.7 times, respectively, as compared to the initial dark values. The delayed photoconductivity can be explained by the presence of deep electron traps located above the Fermi level at the inverted heterointerface.  相似文献   

20.
New (1 – x ? y)Bi0.5Na0.5TiO3-xY0.5Na0.5TiO3-yBaTiO3 lead-free ceramics have been prepared by a conventional ceramic fabrication technique, and their structure and electrical properties have been studied. A morphotropic phase boundary (MPB) of rhombohedral and tetragonal phases is formed at 0.04 < y < 0.10. As compared to pure Bi0.5Na0.5TiO3 ceramic, the partial substitutions of Y3+ for Bi3+ and Ba2+ for (Bi0.5Na0.5)2+ in the A-sites of Bi0.5Na0.5TiO3 lower effectively the coercive field E c and increase the remanent polarization P r of the ceramics. Because of low E c, large P r and the MPB, the ceramics with x = 0–0.02 and y = 0.06 exhibit the optimum piezoelectric properties: d 33 = 155–159 pC/N and k p = 28.8–36.7%. The temperature dependences of dielectric properties of the ceramics show relaxor-like behaviors. The ferroelectric properties at different temperature suggest that the ceramics may contain both the polar and non-polar regions near/above T d.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号