首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seeds of nine Central Asian species of Boraginaceae were investigated for the first time for their oil content and for the fatty acid composition of their seed oils by capillary gas chromatography. Levels of γ-linolenic acid ranged from 6.6 to 13.0% and levels of stearidonic acid ranged from 2.4 to 21.4% of total seed fatty acids. The seed oil ofHackelia deflexa exhibited the highest stearidonic acid content (21.4%) that has been found so far in nature. Other high contents of this fatty acid were in threeLappula species (17.2 to 18.1%). Seed oils ofCynoglossum divaricatum andAmblynotus rupestris contain considerable amounts ofcis-11-eicosenoic (5.3 to 5.8%) andcis-13-docosenoic acid (7.0 to 9.7%) besides γ-linolenic (10.2 to 13.0%) and stearidonic acid (2.4 to 6.5%), which distinguish these oils from those of other Boraginaceae genera. This paper was presented as a poster at 10th Minisymposium and Workshop on Plant Lipids, Sept. 3–6, 1995, in Berne, Switzerland.  相似文献   

2.
Fractionation of blackcurrant seed oil   总被引:4,自引:0,他引:4  
Blackcurrant seed oil is known to be one of the richest natural sources of γ-linolenic (allcis-6,9,12-octadecatrienoic) acid, with values of up to 20% of this acid. These concentrations are sufficient for most applications of the oil, but some utilizations require higher concentrations of γ-linolenic acid. Blackcurrant seed oil also contains up to 14%α-linolenic (allcis-9,12,15-octadecatrienoic) acid. Different fractionation techniques have been evaluated to separate γ-linolenic acid specifically from the other fatty acids present in the oil and, in particular, fromα-linolenic acid. Distillation as well as fractionated crystallization at various temperatures did not give any reasonable results. Surprisingly enough, urea fractionation in methanol gives a specific separation ofα- and γ-linolenic acid, whereas stearidonic (allcis-6,9,12,15-octadecatetraenoic) acid, which is present at around 3% in the blackcurrant seed oil, cannot be separated by urea fractionation. Stearidonic acid, like γ-linolenic acid, has a double bond in the Δ6 position, which makes these two acids unique in this respect. This most probably explains their similar behavior toward urea-occlusion. Further semi-industrial preparative HPLC separations allowed us to obtain fractions of 95% γ-linolenic acid.  相似文献   

3.
The seed oil from a genetically transformed canola (Brassica napus) containing 43% (w/w) of γ-linolenic acid (G, 18∶3n−6), 22% linoleic acid (L, 18∶2n−6), and 16% oleic acid (O, 18∶1n−9) was evaluated. In this high γ-linolenic acid canola oil (HGCO), the predominant 18∶3n−6-containing triacylglycerol (TG) molecular species were GGL (23%), GLO (20%), and GGG (11%). In the total TG, approximately 75% of the 18∶3n−6 was located at the sn-1,3 positions, while only 34% of linoleic acid was at the sn-1,3 positions. The GGL molecular species of HGCO contained approximately equal amounts of GLG and GGL positional isomers, while the GLO molecular species had 95% GOL and 5% GLO isomers. The general characteristics and the tocopherol and phytosterol contents were mostly similar between HGCO and nontransformed canola oil. No detectable amounts of amino acids and nucleotides were observed in the HGCO.  相似文献   

4.
Conjugated fatty acids are regularly found in nature and have a history of biogenic activity in animals and humans. A number of these conjugated fatty acids are microbially produced and have been associated with potent anti-carcinogenic, anti-adipogenic, anti-atherosclerotic and anti-diabetogenic activities. Therefore, the identification of novel conjugated fatty acids is highly desirable. In this study, strains of bifidobacteria and propionibacteria previously shown by us and others to display linoleic acid isomerase activity were assessed for their ability to conjugate a range of other unsaturated fatty acids during fermentation. Only four, linoleic, α-linolenic, γ-linolenic and stearidonic acids, were converted to their respective conjugated isomers, conjugated linoleic acid (CLA), conjugated α-linolenic acid (CLNA), conjugated γ-linolenic acid (CGLA) and conjugated stearidonic acid (CSA), each of which contained a conjugated double bond at the 9,11 position. Of the strains assayed, Bifidobacterium breve DPC6330 proved the most effective conjugated fatty acid producer, bio-converting 70% of the linoleic acid to CLA, 90% of the α-linolenic acid to CLNA, 17% of the γ-linolenic acid to CGLA, and 28% of the stearidonic acid to CSA at a substrate concentration of 0.3 mg mL−1. In conclusion, strains of bifidobacteria and propionibacteria can bio-convert linoleic, α-linolenic, γ-linolenic and stearidonic acids to their conjugated isomers via the activity of the enzyme linoleic acid isomerase. These conjugated fatty acids may offer the combined health promoting properties of conjugated fatty acids such as CLA and CLNA, along with those of the unsaturated fatty acids from which they are formed.  相似文献   

5.
γ-Linolenic acid (Z,Z,Z-6,9,12-octadecatrienoic acid), a very important polyunsaturated fatty acid is found in the free fatty acid fraction prepared by the hydrolysis of borage oil. Our aim was to enrich this fraction in γ-linolenic acid using selective esterification. Candida rugosa lipase was used as catalyst after immobilization on the following ion-exchange resins: Amberlite IRC50, IRA35, IRA93, and Duolite A7, A368, A568. In every case, immobilization modified the lipae’s specificity: palmitic, stearic, oleic, and linoleic acids were preferentially esterified compared to γ-linolenic acid, thus allowing a γ-linolenic acid enrichment of 3.0.  相似文献   

6.
Gravimetric normal-phase silver ion–silica gel column chromatography has been used for the novel application of purification of GLA-containing triglycerides (GLA-TGs) from evening primrose seed oil (EPO). Gradient elution with increasing polarity enabled separation of valuable TG species containing γ-linolenic acid (GLA, 18:3n-6). Enzymatic hydrolysis revealed the distribution of fatty acids (FAs) in the isolated TG species, with GLA in the sn-2 position in different percentages, depending on the degree of unsaturation. A novelty of this work was the successful use of the procedure to improve the purification of raw GLA species from EPO up to preparative scale, thus enabling use of this methodology for industrial purposes.  相似文献   

7.
Immobilized lipase preparations from seedlings of rape (Brassica napus L.) andMucor miehei (lipozyme) used as biocatalysts in esterification and hydrolysis reactions discriminate strongly against γ-linolenic and docosahexaenoic acids/acyl moieties. Utilizing this property, γ-linolenic acid contained in fatty acids of evening primrose oil has been enriched seven to nine-fold, from 9.5 to almost 85% by selective esterification of the other fatty acids with butanol. Similarly, docosahexaenoic acid of cod liver oil has been enriched four to five-fold, from 9.4 to 45% by selective esterification of fatty acids (other than docosahexaenoic acid) with butanol. As long as the reaction is stopped before reaching equilibrium, very little of either γ-linolenic acid or docosahexaenoic acid are converted to butyl esters, which results in high yields of these acids in the unesterified fatty acid fraction.  相似文献   

8.
The pharmaceutically interesting Δ6-FA 18∶3Δ6c, 9c, 12c (γ-linolenic acid) and 18∶4Δ6c,9c,12c,15c (stearidonic acid) appear to have evolved independently several times during plant phylogenetic evolution. They typically occur in “clusters” of a few closely related species or genera in about a dozen different plant families throughout the plant kingdom. A hither-unknown “cluster of occurrence” has now been discovered in the New World plant family Loasaceae. γ-Linolenic and stearidonic acids occur exclusively in representatives of the newly described genus Nasa at significance levels of between 3 and 10% each. Nasa had recently been separated from the older, more broadly circumscribed genus Loasa. The two Δ6-FA were not found in the closely related genus Loasa sensu stricto, nor in a number of other representatives of Loasaceae.  相似文献   

9.
Triacylglycerols of the seed oils rich in α- and/or γ-linolenic acid moieties were separated by silver-ion high-performance liquid chromatography (HPLC) followed by on-line atmospheric pressure chemical ionization-mass spectrometric (APCI-MS) detection. Mass spectra of most triacylglycerols exhibited abundant [M + H]+ and [M − RCO2]+ ions, which defined the molecular weight and the molecular association of fatty acyl residues of a triacylglycerol, respectively. Silver ions formed weaker complexes with triacylglycerols containing γ-linolenic acid than with those containing α-linolenic acid, i.e., the elution order of molecules wasXYT γ>XYT α’,XT γ T α>XT α T α>, andT γ T γ T γ>T γ T γ T α>T γ T α T α>T α T α T α, whereT α=α-linolenic acid,T γ=γ-linolenic acid, andX, Y=fatty acids different from linolenic acid. Furthermore, silver-ion HPLC resulted in partial separation within equally unsaturated triacylglycerols according to differences in the combined number of acyl carbons. Regioisomeric forms of triacylglycerols were not determined from the seed oil samples, although differences were measured with reference compounds in the relative abundances of [M − RCO2]+ ions formed by a loss of a fatty acyl residue from thesn-2 position and thesn-1/3 positions. Silverion HPLC/APCI-MS provided valuable information for structure elucidation of seed oil triacylglycerols: 43 molecular species were identified from cloudberry seed oil, 39 from evening primrose oil, 79 from borage oil, 44 from alpine currant, and 56 from black currant seed oils. The quantitation requires to be studied further, especially in those cases where several molecular weight species of triacylglycerols eluted in a single chromatographic peak.  相似文献   

10.
Evening primrose (Oenothera spp.) seed contains ca. 15% protein, 24% oil, and 43% cellulose plus lignin. The protein is unusually rich in sulphur-containing amino acids and in tryptophan. The component fatty acids of the oil are 65–80% linoleic and 7–14% ofγ-linolenic, but noα-linolenic acid. The 1.5–2% unsaponifiable matter has a composition very similar to that of cottonseed oil. The sterol fraction contains 90%β-sitosterol and the 4-methyl sterol fraction contains 48% citrostadienol;γ-tocopherol dominates its class, with someα- but no other tocopherols.  相似文献   

11.
Heating of borage oil, either under vacuum as a model or during steam-vacuum deodorization, produces artifacts that are geometrical isomers of γ-linolenic acid (cis-6,cis-9,cis-12 18∶3 acid). In a first approach, we have studied the behavior of these fatty acids in the form of either methyl or isopropyl esters on two capillary columns (CP-Sil 88 and DB-Wax). From this study, it appears that the DB-Wax capillary column is the best suited analytical tool to study in some detail γ-linolenic acid geometrical isomers. In a second approach, the structure of these isomers was formally established by combining several analytical techniques: Argentation thin-layer chromatography, comparison of the equivalent chainlengths with those of isomers present in NO2-isomerized borage oil on two different capillary columns, partial hydrazine reduction, oxidative ozonolysis, gas chromatography coupled with mass spectrometry and gas chromatography coupled with Fourier transform infrared spectroscopy. The two main isomers that accumulate upon heat treatments are thetrans-6,cis-9,cis-12 andcis-6,cis-9,trans-12 18∶3 acids with minor amounts ofcis-6,trans-9,cis-12 18∶3 acid. One di-trans isomer, supposed to be thetrans-6,cis-9,trans-12 18∶3 acid, is present in low although noticeable amounts in some of the heated oils. The content of these artificial fatty acids increases with increasing temperatures and duration of heating. The degree of isomerization (DI) of γ-linolenic acid is less than 1% when the oil is deodorized at 200°C for 2 h. Heating at 260°C for 5 h increases the DI up to 74%. Isomerization of γ-linolenic acid resembles that of α-linolenic (cis-9,cis-12,cis-15 18∶3) acid in several aspects: The same kinds and numbers of isomers are formed, and similar degrees of isomerization are reached when the octadecatrienoic acids are heated under identical conditions. It seems that the reactivity of a double-bondvis-à-vis cis-trans isomerization is linked to its relative position, central or external, and not to its absolute position (Δ6, 9, 12 or 15).  相似文献   

12.
To understand the heat-inducedcis-trans isomerization of ethylenic bonds in octadecatrienoic acids, pine seed oil, which contains the unusual nonmethylene-interrupted pinolenic (cis-5,cis-9,cis-12 18∶3) acid as a major component, was heated under vacuum at 240°C for 6 h together with linseed and borage oils. As a results, a small percentage of pinolenic acid undergoescis-trans isomerization. The main isomer that accumulates is thetrans-5,cis-9,trans-12 18∶3 acid. Minor amounts of the three mono-trans isomers are also present. Identification of isomers was realized by combining gas-liquid chromatography on a CP Sil 88 capillary column, argentation thin-layer chromatography and comparing the equivalent chainlengths of artifacts to those of isomers present in NO2-isomerized pine seed oil. Hydrazine reduction was used to demonstrate that there was no positional shift of double bonds. Heat-induced geometrical isomerization of pinolenic acid differs from that of α- and γ-linolenic acids in at least two aspects. The reaction rate is slower (about one-fourth), and mono-trans isomers are formed in low amounts.  相似文献   

13.
Triacylglycerols of oils rich in α- and/or γ-linolenic acids were analyzed by reversed-phase high-performance liquid chromatography (HPLC) coupled with atmospheric pressure chemical ionization mass spectrometry [(APCI)MS]. The (APCI)MS spectra of most triacylglycerols exhibited [M + H]+ and [M - RCOO]+ ions, which defined the molecular weight and the molecular association of fatty acyl residues, respectively. Reversed-phase HPLC resulted in, at least, partial separation of triacylglycerols containing α- and/or γ-linolenic acid moieties. Molecules containing α-linolenic acid residues exhibited a relatively weaker retention by the stationary phase than the corresponding molecules containing γ-linolenic acid residues. Good separation of triacylglycerols of cloudberry seed oil, evening primrose oil, borage oil, and black-currant seed oil was achieved. The molecular species identification of separated components was based on the (APCI)MS data as well as on the elution properties of triacylglycerols on reversed-phase HPLC. This study demonstrated the efficiency of HPLC-(APCI)MS in determining the molecular species compositions of triacylglycerols in complex natural mixtures. Good quality mass spectra could be extracted even from minor chromatographic peaks representing 0.2% or less of the total triacylglycerols.  相似文献   

14.
Seeds of Youngia tenuicaulis and other species from the plant family Compositae (Asteraceae) were studied for their oil content and fatty acid composition. The seed oil of Y. tenuicaulis growing in Mongolia was found to contain 5.6% γ-linolenic acid (18∶3Δ6cis,9cis,12cis) in addition to common fatty acids. The oil was analyzed using chromatographic [capillary gas-liquid chromatography (GLC), thin-layer chromatography] and spectroscopic (infrared, gas chromatography-mass spectrometry) techniques. Seed oil fatty acids of Saussurea amara (containing γ-linolenic acid) and of Arctium minus (containing 18∶3Δ3trans,9cis,12cis), as well as Δ5cis- and Δ5trans-18∶3 were used as GLC reference substances. The evolution in this plant family of a large number of different 18∶3 acids as well as the corresponding evolution of unusual desaturases should be investigated. On the other hand, the Δ6cis-desaturase required for the biosynthesis of γ-linolenic acid may have evolved independently several times in unrelated families of the plant kingdom.  相似文献   

15.
Forty-nine plant species from Spain, belonging to the Boraginaceae, Scrophulariaceae, Onagraceae, and Ranunculaceae families, were surveyed in a search of new sources of γ-linolenic acid (18∶3ω6, GLA). Fatty acid profiles from seeds, stems, roots, flowers and leaves were determined. GLA was detected mainly in seed and root tissues. High GLA amounts were found in seeds of Boraginaceae species, with a maximum of 20.25% of total fatty acids in Myosotis nemorosa. Within the Scrophulariaceae the highest GLA content (10.17%) was found in Scrophularia sciophila. Variable amounts of stearidonic acid, (18∶4ω3, SDA) were present in Boraginaceae species, ranging from 0.08% of total seed fatty acids in Anchusa azurea to 21.06% in Echium asperrimum. SDA was also very abundant in all organs of Asperugo procumbens. A multivariate analysis was performed using our results and those reported for other plant species belonging to the same families in order to investigate a possible correlation between the fatty acid profile and the genera within these families.  相似文献   

16.
γ-Linolenic acid containing oils have been found in seed lipids of a number of plants, but are restricted to certain genera and families,e.g., the Boraginaceae. Some of these oils have found considerable interest for pharmaceutical and dietary use,e.g., borage oil and evening primrose oil in treatment of essential fatty acid and Δ6 desaturase deficiency. Our investigation of the seed lipids of certain Mongolian and other Ranunculaceae has now shown the presnce of unusual fatty acids, including considerable amounts (up to 20%) ofγ-linolenic acid in certain species ofAnemone, whereas this acid was found to be absent in other species ofAnemone. A number of other unusual fatty acids are present inA. rivularis but have not yet been identified. The significance of the presence ofγ-linolenic acid, a Δ6 acid, is discussed in relation to δ5 fatty acids that had been reported to occur in the same plant family.  相似文献   

17.
Mycelia of arachidonic acid-producing fungi belonging to the genusMortierella were found to convert an oil containing α-linolenic acid to an oil containing 5,8,11,14,17-cis-eicosapentaenoic acid (EPA). This conversion was observed when they were grown in a medium containing the oil, glucose and yeast extract at 28 C. On the screening of various oils, linseed oil, in which α-linolenic acid amounts to about 60% of the total fatty acids, was found to be the most suitable for EPA production. Under the optimal culture conditions, a selected strain,Mortierella alpina 20-17, converted 5.1% of the α-linolenic acid in the added oil into EPA, the EPA production reaching 1.35 g/l of culture broth (41.5 mg/g dry mycelia). This value corresponded to 7.1% (by weight) of the total fatty acids in the extracted lipids. The lipid was also found to be rich in arachidonic acid (12.3%). Other major fatty acids in the lipid were palmitic acid (4.4%), stearic acid (3.2%), oleic acid (13.5%), linoleic acid (13.7%), α-linolenic acid (38.5%) and γ-linolenic acid (0.9%).  相似文献   

18.
Lipase-catalyzed acidolysis of acylglycerols of borage (Borago officinalis L.) oil with a docosahexaenoic acid (DHA) concentrate, prepared from algal oil, in organic solvents was studied. Seven lipases were used as biocatalysts for the acidolysis reaction. Novozyme 435 from Candida antarctica, as compared to lipases from Mucor miehei and Pseudomonas sp., showed the highest degree of DHA incorporation into borage oil. Other lipases tested, such as those from Aspergillus niger, C. rugosa, Thermomyces lanuginousus and Achromobacter lunatus, were rather ineffective in the incorporation of DHA into borage oil. Effects of variation of reaction parameters, namely, enzyme load, temperature, time course, and type of solvent, were monitored for C. antarctica as the biocatalyst of choice. Incorporation of DHA increased with increasing amount of enzyme, reaching 27.4% at an enzyme concentration of 150 lipase activity units. As incubation time progressed, DHA incorporation also increased. After a reaction time of 24 h, the contents of total n-6 and n-3 polyunsaturated fatty acids in acylglycerols were 44.0 and 27.6%, respectively. The highest degree of DHA incorporation was achieved when hexane was used as the reaction medium. The positional distribution of DHA in modified borage oil was determined using pancreatic lipase hydrolysis. Results showed that DHA was randomly distributed over the sn-1, sn-2, and sn-3 positions of the triacylglycerol. Thus, preparation of modified borage oil acylglycerols containing both DHA (22:6n-3; 27.4%) and γ-linolenic acid (18:3n-6; 17.0%) was successfully achieved and products so obtained may have beneficial effects beyond simple physical mixtures of the two oils. The final oil had a ratio of n-3 to n-6 of 0.42–0.62 which is nutritionally more suitable than the original unaltered borage oil.  相似文献   

19.
The separation of γ- and α-linolenic acid containing triacylglycerols with an identical acyl carbon number and degree of unsaturation was obtained on capillary supercritical fluid chromatography using a 25% cyanopropyl−75% methylpolysiloxane stationary phase. The resolution of 1,3-dioleoyl-2-γ-linolenoyl-sn-glycerol and 1,3-dioleoyl-2α-linolenoyl-sn-glycerol was 1.35 on a 10 m×50 μm i.d. column, whereas the resolution was enhanced to 1.66 by combining two 10-meter columns in series. The difference in the position of double bonds in one linolenic acid residue of triacylglycerols resulted in two series of peaks in the separation of alpine currant (Ribes alpinum) and black currant (R. nigrum) seed oils. The use of the 10-meter column was found to be appropriate for the screening of the triacylglycerol profile in both seed oils studied.  相似文献   

20.
The mycelial dihomo-γ-linolenic acid content of an arachidonic acid-producing fungus,Mortierella alpina 1S-4, was found to increase, with an accompanying marked decrease in its arachidonic acid content, on cultivation with sesame oil. The resultant mycelia were found to be a rich source of dihomo-γ-linolenic acid. This unique phenomenon was suggested to be due to specific repression of the conversion of dihomo-γ-linolenic acid to arachidonic acid by the oil. After fractionation of the oil with acetone into oil and non-oil fractions, it was found that the effective factor(s) was present in the non-oil fraction. In a study on optimization of the culture conditions for the production of dihomo-γ-linolenic acid byM. alpina 1S-4, a medium containing glucose, yeast extract and the non-oil fraction was found to be suitable for the production. Under the optimal conditions in a 50-1 fermentor, the fungus produced 107 mg of dihomo-γ-linolenic acid/g dry mycelia (2.17 g/l of culture broth). This value accounted for 23.1% of the total fatty acids in the lipids extracted from the mycelia. The mycelia were also rich in arachidonic acid (53.5 mg/g dry mycelia, 11.2%). Other major fatty acids in the lipids were palmitic acid (24.1%), stearic acid (7.0), oleic acid (20.1), linoleic acid (6.6) and γ-linolenic acid (4.1). On leave from Suntory Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号