首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present work, single-walled carbon nanotubes were dispersed within the matrix of carbon fabric reinforced epoxy composites in order to develop novel three phase carbon/epoxy/single-walled carbon nanotube composites. A combination of ultrasonication and high speed mechanical stirring at 2000 rpm was used to uniformly disperse carbon nanotubes in the epoxy resin. The state of carbon nanotube dispersion in the epoxy resin and within the nanocomposites was characterized with the help of optical microscopy and atomic force microscopy. Pure carbon/epoxy and three phase composites were characterized for mechanical properties (tensile and compressive) as well as for thermal and electrical conductivity. Fracture surfaces of composites after tensile test were also studied in order to investigate the effect of dispersed carbon nanotubes on the failure behavior of composites. Dispersion of only 0.1 wt% nanotubes in the matrix led to improvements of 95% in Young's modulus, 31% in tensile strength, 76% in compressive modulus and 41% in compressive strength of carbon/epoxy composites. In addition to that, electrical and thermal conductivity also improved significantly with addition of carbon nanotubes.  相似文献   

2.
Halloysite nanotubes (HNT) were effectively incorporated into epoxy resin and used for infusion of carbon fibre textiles, resulting in epoxy/halloysite nanotube/carbon fibre (EP/HNT/CF) multi-scale composites. The distribution of nanotubes in the composites was examined by SEM. The thermomechanical properties of the composites were characterized by dynamic mechanical analyser (DMA). A 25% enhancement was recorded for the storage modulus of EP/HNT/CF composite in the glassy state. Moreover, the Tg of the laminates increased with the addition of HNT, and the values were even higher than the Tg of their matrix. Additionally, the Izod impact strength of the composites has been improved. These results indicate a synergistic effect between HNT and carbon fibres.  相似文献   

3.
Self-sensing and interfacial evaluation were investigated with different dispersion solvents for single carbon fiber/carbon nanotube (CNT)-epoxy composites by electro-micromechanical technique and acoustic emission (AE) under loading/subsequent unloading. The optimized dispersion procedure was set up to obtain improved mechanical and electrical properties. Apparent modulus and electrical contact resistivity for CNT-epoxy composites were correlated with different dispersion solvents for CNT. CNT-epoxy composites using good dispersion solvents exhibited a higher apparent modulus because of better stress transferring effects due to the relatively uniform dispersion of CNT in epoxy and enhanced interfacial adhesion between CNT and the epoxy matrix. However, good solvents exhibited a higher apparent modulus but lower thermodynamic work of adhesion, Wa for single carbon microfiber/CNT-epoxy composite. It is attributed to the fact that hydrophobic behavior with high advanced contact angle was observed for CNT-epoxy in the good solvent, which might not be compatible well with the carbon microfiber. Damage sensing was also detected simultaneously using AE combined with electrical resistance measurement. Electrical resistivity increased stepwise with progressing fiber fracture due to the decrease in electrical contact by the CNT.  相似文献   

4.
The effect of multi-walled carbon nanotube (MWCNT) addition on mechanical properties of epoxy resin was investigated to obtain the tensile strength, compressive strength and Young’s modulus from load versus displacement graphs. The result shows that the tensile strength, compressive strength and Young’s modulus of epoxy resin were increased with the addition of MWCNT fillers. The significant improvements in tensile strength, compressive strength and Young’s modulus were obtained due to the excellent dispersion of MWCNT fillers in the epoxy resin. The dispersion of MWCNT fillers in epoxy resin was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis.Also, Halpin–Tsai model was modified by considering the average diameter of internal/external of multi-walled nanotube and orientation factor (α) to calculate the Young’s modulus of multi-walled carbon nanotubes (MWCNTs)/epoxy resin composite. There was a good correlation between the experimentally obtained Young’s modulus and modified Halpin–Tsai model.  相似文献   

5.
Achieving both uniform dispersion and good interfacial adhesion have been long-term challenges in optimizing the properties of carbon nanotube reinforced polymer nanocomposites. A novel and effective plasma method, which combines continuous and pulsed plasma modes in a nitrogen and hydrogen gas mixture (15% H2), has been developed to better meet this need. It has yielded high levels of primary amines on the surface of multiwalled carbon nanotubes which improved their dispersion and interfacial bonding with an epoxy resin. By adding just 0.1 wt% of these nanotubes to Bisphenol F epoxy resin, the mechanical properties of the nanocomposites, from nano to macro, were significantly improved. Nanoindentation tests showed that the hardness and elastic modulus increased by 40% and 19%, respectively, using the functionalized nanotubes. Macro-mechanical properties from thermo-mechanical and flexural analysis were also enhanced, with a nearly 40% improvement in toughness.  相似文献   

6.
《Composites Part A》2007,38(5):1331-1336
The modification of multi-walled carbon nanotubes (MWNTs) with amine groups was investigated by FTIR, Raman spectroscopy and XPS after such steps as carboxylation, acylation and amidation. Nanotube-reinforced epoxy polymer composites were prepared by mixing amino-functionalized MWNTs with epoxy resin and curing agent. DSC, TGA, SEM and flexural test were used to investigate the thermal and mechanical properties of the composites. The results showed that amino-functionalized MWNTs could enhance the interfacial adhesion between the nanotubes and the matrix, thus greatly improve the thermal and mechanical properties of the resin epoxy bulk material.  相似文献   

7.
通过物理沉积法和静电吸附法在玻璃纤维织物(GF)表面包覆多壁碳纳米管(MWCNTs),制备GF-d-CNTs和GF-a-CNTs两种多尺度增强体,采用真空灌注工艺制备MWCNTs-GF增强环氧复合材料。采用静态、动态力学法、扫描电镜、红外光谱等分析手段,对复合材料的拉伸、弯曲、层间剪切、黏弹性和微观组成结构表征。结果表明:MWCNTs包覆于GF表面形成"倒刺"结构,并通过啮合作用增强了复合材料界面的强度和树脂韧性,提高了复合材料的玻璃化温度(Tg)等;与纯GF复合材料相比,GF-d-CNTs复合材料的拉伸强度和模量分别提高14.5%和37.9%,弯曲强度和模量分别提高26.2%和36.6%,层间剪切强度提高31.5%;GF-a-CNTs复合材料的Tg提高了8.9℃。  相似文献   

8.
Graphene nanopowder (GNP) and multi-walled carbon nanotube (MWCNT)-filled epoxy thin-film composites were fabricated using ultrasonication and the spin coating technique. The effect of sonication time (10, 20 and 30 min) and GNP loading (0.05–1 vol%) on the tensile and electrical properties of GNP/epoxy thin-film composites was investigated. The addition of GNP decreased the material’s tensile strength and modulus. However, among the tested samples, the GNP/epoxy composites produced using 20 min of sonication time had a slightly higher tensile strength and modulus, with a lower electrical percolation threshold volume fraction. The effect of sonication time was supported by morphological analysis, which showed an improvement in GNP dispersion with increased sonication time. However, GNP deformation was observed after a long sonication time. The GNP/epoxy composites at different filler loadings showed higher electrical properties but slightly lower tensile properties compared with the MWCNT/epoxy composites fabricated using 20 min of sonication time.  相似文献   

9.
The single-walled carbon nanotubes (SWNTs) filled nanocomposite SWNT/epoxy resin composite with good uniformity, dispersion and alignment of SWNTs and with different SWNTs concentrations was produced by solution casting technique. Subsequently, the semidried mixture was stretched repeatedly along one direction at a large draw-ratio of 50 for 100 times at ambient atmosphere manually to achieve a good alignment and to promote dispersion of SWNTs in the composite matrix. Composite showed higher electrical conductivities and mechanical properties such as the Young’s modulus and tensile strength along the stretched direction than perpendicular to it, and the electrical property of composite rise with the increase of SWNT concentration. The percolation threshold value of electrical conductivity along the stretching direction is lower than the value perpendicular to the SWNTs orientation. In addition, the anisotropic electric and mechanical properties results, SEM micrograph and the polarized Raman spectra of the SWNT/epoxy composite reveal that SWNTs were well dispersed and aligned in the composites by the repeated stretching process.  相似文献   

10.
In this work, we studied the influence of surface functionality of multi-walled carbon nanotubes (MWCNTs) on the mechanical properties of basalt fiber-reinforced composites. Acid and base values of the MWCNTs were determined by Boehm's titration technique. The surface properties of the MWCNTs were determined FT-IR, and XPS. The mechanical properties of the composites were assessed by measuring the interlaminar shear stress, fracture toughness, fracture energy, and impact strength. The chemical treatments led to a change of the surface characteristics of the MWCNTs and of the mechanical interfacial properties of MWCNTs/basalt fibers/epoxy composites. Especially the acid-treated MWCNTs/basalt fibers/epoxy composites had improved mechanical properties compared to the base-treated and non-treated MWCNTs/basalt fibers/epoxy composites. These results can probably be attributed to the improved interfacial bonding strength resulting from the improved dispersion and interfacial adhesion between the epoxy resin and the MWCNTs.  相似文献   

11.
Vinyl ester resins are often utilized in advanced naval composite structures due to the relatively low viscosity of the resin and the capability to cure at ambient temperatures. These qualities facilitate the production of large naval composite structures using resin infusion techniques. Vinyl ester monomer was synthesized from the epoxy resin to overcome processing challenges associated with volatility of the styrene monomer in vinyl ester resin. In this research we have investigated the use of a calendering approach for dispersion of multi-walled carbon nanotubes in vinyl ester monomer, and the subsequent processing of nanotube/vinyl ester composites. The high aspect ratios of the carbon nanotubes were preserved during processing and enabled the formation of a conductive percolating network at low nanotube concentrations. An electrical percolation threshold below 0.1 wt.% carbon nanotubes in vinyl ester was observed. Formation of percolating carbon nanotube networks at low concentration holds promise for the utilization of carbon nanotubes as in situ sensors for detecting deformation and damage in advanced naval composites.  相似文献   

12.
通过对空心玻璃微珠(HGM)/环氧树脂复合材料进行动态力学分析(DMA),给出了环氧树脂基体在不同频率下的动态力学温度谱,利用时温等效原理,根据位移因子构建了HGM/环氧树脂复合材料在室温下的储能模量和损耗模量的频率主曲线。分析了温度和频率、体积比和粒径对HGM/环氧树脂复合材料储能模量和损耗模量的影响规律,并结合SEM图像分析其影响机制。结果表明,随着HGM体积分数的增加,HGM/环氧树脂复合材料储能模量和损耗模量呈增大趋势;储能模量随温度升高而降低,损耗模量随温度的增加先增大后减小,在玻璃化温度附近形成一个峰值,HGM低于10%的配比有利于提高其动态力学性能。颗粒的团聚及界面的黏合均对HGM/环氧树脂复合材料的动态力学性能产生较大影响。  相似文献   

13.
We report enhanced thermal and mechanical properties of carbon nanotube (CNT) composites achieved through the use of functionalized CNTs-reactive polymer linkages and three-roll milling. CNTs were functionalized with carboxyl groups and dispersed in a polymer containing an epoxide group resulting in a chemical reaction. To maximize CNT dispersion for practical usage, entangled CNTs are separated and then evenly dispersed within the polymer matrix using three horizontally positioned rotating rolls that apply a strong shear force to the composite. Consequently, accompanying with thermal stability, elastic modulus and storage modulus of such functionalized CNT/polymer composites were increased by 100% and 500% that of the untreated epoxy polymer.  相似文献   

14.
以碳纳米管、碳化硅颗粒为原料制备环氧树脂复合吸波材料,并对其吸波性能进行测试,研究了碳纳米管、碳化硅颗粒含量与复合材料吸波性能的关系.结果表明碳纳米管、碳化硅颗粒的含量对复合材料的吸波性能有较大影响.随碳纳米管含量的增加,碳纳米管/环氧树脂复合材料的吸波性能先提高后降低,碳纳米管含量存在最佳值(12%,质量分数).将碳...  相似文献   

15.
This study examined the mechanical properties of aligned multi-walled carbon nanotube (CNT)/epoxy composites processed using a hot-melt prepreg method. Vertically aligned ultra-long CNT arrays (forest) were synthesized using chemical vapor deposition, and were converted to horizontally aligned CNT sheets by pulling them out. An aligned CNT/epoxy prepreg was fabricated using hot-melting with B-stage cured epoxy resin film. The resin content in prepreg was well controlled. The prepreg sheets showed good drapability and tackiness. Composite film specimens of 24-33 μm thickness were produced, and tensile tests were conducted to evaluate the mechanical properties. The resultant composites exhibit higher Young’s modulus and tensile strength than those of composites produced using conventional CNT/epoxy mixing methods. For example, the maximum elastic modulus and ultimate tensile strength (UTS) of a CNT (21.4 vol.%)/epoxy composite were 50.6 GPa and 183 MPa. These values were, respectively, 19 and 2.9 times those of the epoxy resin.  相似文献   

16.
Multi-phase composites have been studied by incorporating carbon nanotubes (CNTs) as a secondary reinforcement in an epoxy matrix which was then reinforced with glass fiber mat. Different types of CNTs e.g. amino functionalized carbon nanotubes (ACNT) and pristine carbon nanotubes (PCNT) were homogeneously dispersed in the epoxy matrix and two-ply laminates were fabricated using vacuum-assisted resin infusion molding technique. The issues related to CNT dispersion and interfacial bonding and its affect on the mechanical properties have been studied. An important finding of this study is that PCNT scores over ACNT in composites prepared under certain conditions. This is a very significant finding since PCNT is available at a much lower cost than ACNT.  相似文献   

17.
Inherent sensing of load, micro-damage and stress transferring effects were evaluated for carbon nanotube (CNT) and carbon nanofiber (CNF)/epoxy composites (with various added contents) by an electro-micromechanical technique, using the four-point probe method. Carbon black (CB)/epoxy composites, with conventional nanosize material added, were used for the comparison with CNT and CNF composites. Subsequent fracture of the carbon fiber in the dual matrix composites (DMC) was detected by acoustic emission (AE) and by the change in electrical resistance, ΔR due to electrical contacts of neighboring CNMs. Stress/strain sensing of the nanocomposites was detected by an electro-pullout test under uniform cyclic loading/subsequent unloading. CNT/epoxy composites showed the best sensitivity to fiber fracture, matrix deformation and stress/strain sensing, whereas CB/epoxy composite exhibited poorer sensitivity. From the apparent modulus (as a result of matrix modulus and interfacial adhesion), the stress transferring effects reinforced by CNT was highest among three CNMs. The thermodynamic work of adhesion, Wa as found by dynamic contact angle measurements of the CNT/epoxy composite as a function of added CNT content was correlated and found to be consistent with the apparent mechanical modulus. Uniform dispersion and interfacial adhesion appear to be key factors for improving both sensing and mechanical performance of nanocomposite. Thermally treated-CNF composites exhibited a slightly higher apparent modulus, whereas higher testing temperatures appeared to lower the apparent modulus.  相似文献   

18.
The inherent multifunctional properties of carbon nanotubes provide an opportunity to create novel composites, but their dispersion into a polymer matrix is challenging due to nanotube dimensions, interparticle forces, and poor interaction with the polymer. In this study, we used melt mixing to disperse multiwalled carbon nanotubes (MWNTs) in a polyimide resin under various process conditions to understand the efficacy of the process and the energy required to achieve dispersion and distribution. Through controlled variation of process conditions, we achieved various degrees of nanotube dispersion and distribution. The different dispersion and distribution states were observed by microscopy and correlated with the magnitude of the changes seen in the glass transition temperature and viscosity when compared to the neat resin. The results of these studies will be used to assess the compatibility of nanocomposite resins with composite fabrication methods and predict appropriate processing conditions for producing multiscale composites.  相似文献   

19.
Composites based on epoxy resin and differently aligned multi-walled carbon nanotube (MWCNT) sheets have been developed using hot-melt prepreg processing. Aligned MWCNT sheets were produced from MWCNT arrays using the drawing and winding technique. Wavy MWCNTs in the sheets have limited reinforcement efficiency in the composites. Therefore, mechanical stretching of the MWCNT sheets and their prepregs was conducted for this study. Mechanical stretching of the MWCNT sheets and hot stretching of the MWCNT/epoxy prepregs markedly improved the mechanical properties of the composites. The improved mechanical properties of stretched composites derived from the increased MWCNT volume fraction and the reduced MWCNT waviness caused by stretching. With a 3% stretch ratio, the MWCNT/epoxy composites achieved their best mechanical properties in this study. Although hot stretching of the prepregs increased the tensile strength and modulus of the composites considerably, its efficiency was lower than that of stretching the MWCNT sheets.  相似文献   

20.
In the development of nanotube reinforced polymer composites, one of the fundamental issues that scientists and engineers are confronting is the nanotube/polymer interfacial bonding, which will determine load transfer capability from the polymer matrix to the nanotube. In this paper, the interfacial bonding of single-walled nanotube (SWNT) reinforced epoxy composites was investigated using a combination of computational and experimental methods. The interfacial bonding was predicted using molecular dynamics (MD) simulations based on a cured epoxy resin model, which was constructed by incorporating three-dimensional cross-links formed during curing reaction. Based on the pullout simulations, the interfacial shear strength between the nanotube and the cured epoxy resin was calculated to be up to 75 MPa, indicating that there could be an effective stress transfer from the epoxy resin to the nanotube. In the experiments, single-walled nanotube reinforced epoxy composites were fabricated, characterized and analyzed. The uniform dispersion and good interfacial bonding of the nanotubes in the epoxy resin resulted in a 250–300% increase in storage modulus with the addition of 20–30 wt% nanotubes. These experimental results provided evidence of stress transfer in agreement with the simulation results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号