首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Since the chip-formation mechanism in orthogonal machining of composites is different from that of metals, the cutting theories developed for metals cannot be directly used for orthogonal machining of composites. The objective of this research was to develop a new analytical method using energy method to predict the machining forces for orthogonal machining of unidirectional polymer–matrix composites (PMCs) for fiber orientations ranging from 90° to 180° Experiments were conducted to verify the validity of the proposed model using tools with rake angles of 5°, 10°, 15°, and 20°.  相似文献   

2.
Progressive failure of unidirectional glass fiber-reinforced polymer composites (FRP) was studied using finite element analysis in orthogonal machining. Chip formation process and damage modes such as matrix cracking, fiber–matrix debonding and fiber breaking were modelled by degrading the material properties. Damage analysis was carried out using Hashin, Maximum stress and Hoffman failure criteria. After damage was detected, selective stiffness degradation was applied to the workpiece material. The objective of this study is to better understand the chip formation process and to analyse the cutting-induced damage from initiation stage until complete chip formation. The effect of the fiber orientation on cutting forces and sub-surface damage was investigated with different failure criteria. The results were addressed in terms of cutting forces evolution and damage progression in the composite structure during machining. It was demonstrated that the use of the stiffness degradation concept with the appropriate failure criterion responds potentially in a predictable fashion to changes in chip formation process for machining of FRPs.  相似文献   

3.
Orthogonal machining of unidirectional carbon fiber reinforced polymer (UD-CFRP) and glass fiber reinforced polymer (UD-GFRP) composites is simulated using finite element method (FEM). A two-phase micro-mechanical model with fiber assumed elastic and the matrix elasto-plastic is used to estimate the cutting forces during machining. A cohesive zone simulated the interface debonding between the fiber and matrix. Fiber failure was based on maximum principal stresses reaching the tensile strength. The matrix elastic modulus was degraded to include damage once yield strength was reached. The model assumes plane strain and quasi-static condition. The cutting forces during orthogonal machining were studied both experimentally and numerically for a range of fiber orientations (θ), depths of cut (t) and tool rake angles (γ). The contact forces developed between the tool and the fiber provided a good estimate of the cutting (Fh) and thrust (Fv) forces during the orthogonal cutting process. The failure of fiber is found to be a combination of crushing and bending, with the bending effect becoming more significant as the fiber orientation changes from 90° to 15°.  相似文献   

4.
In this study two‐dimensional finite element model of Al/SiC metal matrix composites (MMC) are investigated by the use of ABAQUS/Explicit software. Chip formations and machining forces during machining of MMC have been studied and compared to experimental data. It was found that the resulted chips in simulation and the generated chips in experiments both have saw‐tooth in appearance. On the other hand, the obtained cutting forces diagrams from simulation and experimental conditions have considerable fluctuating with passing cutting time. This is due to the interaction between tool and SiC particles during chip formation.  相似文献   

5.
A corrected Linde's criterion considering the shearing effect for anisotropic progressive damage is developed to describe the elastic-brittle behavior of fiber-reinforced composites. Based on this criterion, a new three-dimensional (3D) nonlinear finite element model for static damage of unidirectional fiber-reinforced composites is proposed within a framework of continuum mechanics. The model is validated by taking 3D braided composites as example to study the relationship between the damage of materials and the effective elastic properties. The impregnated unidirectional composites are treated as homogeneous and transversely isotropic materials, whose properties are calculated by the Chamis' equations. The more accurate failure mechanisms of composites are revealed in the simulation process, and the effects of braided parameters on the uniaxial tensile behavior of 3D braided composites are investigated. Comparison of numerical results and experimental data is also carried out, which shows a better agreement than that of former study using the 3D Hashin's criterion.  相似文献   

6.
Productivity in the machining of titanium alloys is adversely affected by rapid tool wear as a consequence of high cutting zone temperature. Conventional cutting fluids are ineffective in controlling the cutting temperature in the cutting zone. In this research work, an attempt has been made to investigate the effect of liquid nitrogen when it is applied to the rake surface, and the main and auxiliary flank surfaces through holes made in the cutting tool insert during the turning of the Ti–6Al–4V alloy. The cryogenic results of the cutting temperature, cutting forces, surface roughness and tool wear of the modified cutting tool insert have been compared with those of wet machining. It has been observed that in the cryogenic cooling method, the cutting temperature was reduced by 61–66% and the surface roughness was reduced to a maximum of 36% over wet machining. The cutting force was decreased by 35–42% and the flank wear was reduced by 27–39% in cryogenic cooling over that of wet machining. Cryogenic cooling enabled a substantial reduction in the geometry of tool wear through the control of the tool wear mechanisms. The application of liquid nitrogen to the heat generation zones through holes made in the cutting tool insert was considered to be more effective over conventional machining.  相似文献   

7.
Epoxy granite composites are identified and recognized as better materials for machine tool applications due to inherent damping properties. However, end milling of these composites has not been explored much. Milling of epoxy granite composites presents a number of problems, namely, cutting forces and surface roughness appear during machining. This research work focuses on end milling of epoxy granite composite specimens using high-speed steel end mill cutter by varying the cutting conditions such as spindle speed and feed with a uniform depth of cut and selection of optimal machining parameters. The experimental runs of 27 different trials were carried out and three different attributes such as thrust force, tangential force, and surface roughness were analyzed. This research work presents a sequential procedure for machining parameters selection. Selection of optimal machining parameters is done on the basis of Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method.  相似文献   

8.
The influence of the machining quality on the mechanical behavior of CFRP composites is yet not fully understood. There are only few works in the literature that have investigated the effect of the machining quality on CFRP. In fact, most of these works focus only on conventional machining such as axial or orbital drilling. The aim of this paper is to examine the influence of two machining processes namely conventional machining (CM) and abrasive water jet machining (AWJM) on the mechanical behavior of composite plates under cyclic loading. For this purpose, an experimental study using several composite plates drilled with a cutting tool and an abrasive water jet machining was carried out. In order to study the impact of the process of machining on the mechanical behavior, thermographic infrared testing and fatigue cyclic tests were performed to assess temperature evolutions, stiffness degradation, and the damage evolution in these plates. Fatigue testing results have shown that the damage accumulation in specimens drilled with CM process was higher than the AWJM specimens. Furthermore, the endurance limit for a composite plate drilled with CM was approximately 10% inferior compared to specimens drilled with AWJM. This difference can be related to the initial surface integrity after machining induced by the difference in the mechanism of material’s removal between the two processes used.  相似文献   

9.
A Monte Carlo simulation is established to predict the failure strain of unidirectional fibre composites. The effect of matrix shear yielding of a high performance epoxy resin is introduced into the model through load sharing factors between the fibres adjacent to fibre-break(s). Strain concentration factors (SCF) of fibres are obtained using Finite Element Methods (FEM) in a three dimensional multi-fibre unit cell containing one, two and three adjoining fibre-break(s). The tensile strains of the surviving adjacent fibres are intensified as a function of their distances from the fracture. A statistical simulation is carried out to predict the failure strain of a single layer of unidirectional (UD) fibre composites with the thickness of the fibre ineffective length. Using the weakest link theory, the ultimate failure strain of a real size UD composite is predicted.  相似文献   

10.
The present investigation focuses on the multiple performance machining characteristics of GFRP composites produced through filament winding. Grey relational analysis was used for the optimization of the machining parameters on machining GFRP composites using carbide (K10) tool. According to the Taguchi quality concept, a L27, 3-level orthogonal array was chosen for the experiments. The machining parameters namely work piece fiber orientation, cutting speed, feed rate, depth of cut and machining time have been optimized based on the multiple performance characteristics including material removal rate, tool wear, surface roughness and specific cutting pressure. Experimental results have shown that machining performance in the composite machining process can be improved effectively by using this approach.  相似文献   

11.
In this article, response surface methodology has been used for finding the optimal machining parameters values for cutting force, surface roughness, and tool wear while milling aluminum hybrid composites. In order to perform the experiment, various machining parameters such as feed, cutting speed, depth of cut, and weight (wt) fraction of alumina (Al2O3) were planned based on face-centered, central composite design. Stir casting method is used to fabricate the composites with various wt fractions (5%, 10%, and 15%) of Al2O3. The multiple regression analysis is used to develop mathematical models, and the models are tested using analysis of variance (ANOVA). Evaluation on the effects and interactions of the machining parameters on the cutting force, surface roughness, and tool wear was carried out using ANOVA. The developed models were used for multiple-response optimization by desirability function approach to determine the optimum machining parameters. The optimum machining parameters obtained from the experimental results showed that lower cutting force, surface roughness, and tool wear can be obtained by employing the combination of higher cutting speed, low feed, lower depth of cut, and higher wt fraction of alumina when face milling hybrid composites using polycrystalline diamond insert.  相似文献   

12.
A particle discrete element method (DEM) was employed to simulate transverse cracking in laminated fiber reinforced composites. The microstructure of the laminates was modeled by a DEM model using different mechanical constitutive laws and materials parameters for different constituents, i.e. fiber, matrix and fiber/matrix interface. Rectangular, hexagonal and random fiber distributions were simulated to study the effect of fiber distribution on the transverse cracking. The initiation and dynamic propagation of transverse cracking and interfacial debonding were all captured by the DEM simulation, which showed similar patterns to those observed from experiments. The effect of fiber volume fraction was also studied for laminae with randomly distributed fibers. It was found that the distribution and volume fraction of fibers affected not only the transverse cracking path, but also the behavior of matrix plastic deformation and fiber/matrix interface yielding in the material.  相似文献   

13.
ABSTRACT

Hybrid Metal Matrix Composites (MMCs) are a new class of composites, formed by a combination of the metal matrix and more than one type of reinforcement having different properties. Machining of MMCs is a difficult task because of its heterogeneity and abrasive nature of reinforcement, which results in excessive tool wear and inferior surface finish. This paper investigates experimentally the addition of graphite (Gr) on cutting force, surface roughness and tool wear while milling Al/15Al2O3 and Al/15Al2O3/5Gr composites at different cutting conditions using tungsten carbide (WC) and polycrystalline diamond (PCD) insert. The result reveals that feed has a major contribution on cutting force and tool wear, whereas the machined surface roughness was found to be more sensitive to speed for both composite materials. The incorporation of graphite reduces the coefficient of friction between the tool–workpiece interfaces, thereby reducing the cutting force and tool wear for hybrid composites. The surface morphology and worn tool are analyzed using scanning electron microscope (SEM). The surface damage due to machining extends up to 200 µm for Al/15Al2O3/5Gr composites, which is beyond 250 µm for Al/15Al2O3 composites.  相似文献   

14.
An experimental study was conducted to evaluate the performance of C6 tungsten carbide, C2 tungsten carbide, and Polycrystalline Diamond (PCD) inserts in cutting Graphite/Epoxy (Gr/Ep) composites. Continuous and interrupted cutting tests under dry conditions were made to cut woven fabric and tape Gr/Ep composites. It was found that continuous cutting mode and high cutting speeds significantly reduce tool life of carbides. Machining of tape Gr/Ep reduces the tool life more than the machining of fabric work pieces. Also, C2 grade carbide inserts had a longer tool life than C6 carbide inserts despite the type of work piece or machining condition used. It was observed that a PCD insert's life was about 100 times of C2 carbide inserts during continuous cutting and at high speeds.  相似文献   

15.
This study focused on the tool topography and chip formation during machining of aluminium-silicon carbide particulate composites. The Al/SiC composites with different volume fraction of reinforcements were machined with cemented carbide tool inserts. The effects of volume fraction, cutting speed, feed rate, depth of cut, and time of machining on chip disposability, chip thickness ratio, and shear angle were studied. The quick-stop sections and chip cross sections at different conditions were also observed. The tool topography was also analyzed.  相似文献   

16.
In this paper a new approach to tool path planning is presented for five-axis machining of sculptured surfaces. The positioning of the cutting tool along a machining pass is determined in an attempt to produce the most efficient machining pass with respect to the entire tool path. In this way the tool positioning strategy is an integral part of the path planning strategy. This differs from current methods, where tool positioning and path planning are two separate tasks. In the present work, various tool orientations are evaluated for cutter locations along the machining pass. The evaluation and eventual selection are made with respect to the completion of the overall tool path. An example part was simulated using the proposed integrated method which resulted in improved efficiency over a more traditional approach. The proposed method was also verified experimentally using cutting tests.  相似文献   

17.
This paper presents a study about the chemical vapour deposition (CVD) diamond coated tool performance in machining unreinforced PEEK and composite PEEK CF30 (reinforced with 30% of carbon fibres).

The experimental procedure consisted of turning operations, during which cutting forces and surface roughness obtained in composite workpieces were measured.

The obtained results showed a best cutting performance for CVD diamond coated tool in machining PEEK composites, particularly in terms of cutting forces and power consumption, when compared with polycrystalline diamond (PCD) and cemented carbide (K10) cutting tools. This fact is very important due to the minor production costs of CVD diamond coated tools in comparison with PCD tools.  相似文献   


18.
The machining of carbon fibre reinforced plastics (CFRPs) is often accompanied by delamination of the top layers of the machined edges. Such damage necessitates time-consuming and costly post-machining and in some cases leads to rejection of components. The work described in this paper systematically investigates the occurrence of delamination of the top layers during the machining of CFRP tape, with the focus being on the process of contour milling. The occurrence and propagation of delamination were studied by milling slots in unidirectional CFRP specimens having different fibre orientations and mainly analysing the slot tip. This allowed the key mechanisms to be clarified. The results show that delamination is highly dependent on the fibre orientation and the tool sharpness. The experiments allow derivation of a novel system for describing the occurrence and propagation of delamination during milling. Furthermore, the principles also apply for drilling. The results allow customisation of the machining procedure to reduce and in some cases totally avoid delamination, leading to a significant increase in the quality of components.  相似文献   

19.
One-dimensional discrete element model for the ballistic impact is used to determine the depth of penetration of a bullet on a thick target. Discrete Element Method (DEM) is a numerical tool where a continuum is modelled as a network of masses connected by normal springs. A one-dimensional discrete element model is developed to obtain the displacements and forces associated with the ballistic impact on a thick target. The depth of penetration of the penetrator into the target is calculated from these DEM results. The simulated results of depth of penetration are found to be in reasonable agreement with the simulation results of other numerical approaches that are available in the literature.  相似文献   

20.
复合材料的切削加工表面结构与表面粗糙度   总被引:15,自引:1,他引:15       下载免费PDF全文
普通金属材料的切削加工理论表面粗糙度可以用公式计算。复合材料经切削加工后其表面留有各种凹凸缺陷,这些谷峰轮廓并非由刀刃直接切出,故不宜用现有普通材料的公式计算其理论表面粗糙度。纤维增强复合材料的切削加工表面结构和粗糙度与切削方向密切相关。颗粒增强复合材料无方向性,其已加工表面结构和粗糙度主要受增强颗粒硬度和粒度以及含量控制。增强体与基体的界面强度及切削刀具和工艺条件对复合材料加工表面粗糙度有很大影响。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号