首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon nanotubes (CNTs) were incorporated into polystyrene (PS) and poly(methyl methacrylate) (PMMA) matrices via in situ emulsion and emulsion/suspension polymerization methods. The polymerizations were carried out using various initiators, surfactants, and carbon nanotubes to determine their influence on polymerization and on the properties of the composites. The loading of CNTs in the composites varied from 0 to 15 wt.%, depending on the CNTs used. Morphology and dispersion of the CNTs were analyzed by transmission and scanning electron microscopy techniques. The dispersion of multi-walled carbon nanotubes (MWCNT) in the composites was excellent, even at high CNT loading. The mechanical properties, and electrical and thermal conductivities, of the composites were also analyzed. Both electrical and thermal conductivities were improved.  相似文献   

2.
Nanocomposites containing four different polyamide 12 (PA12) types and three grades of multiwalled carbon nanotubes (MWNTs) were prepared via small-scale melt processing to study the effect of different MWNTs and the influence of polymer properties on the dispersion of the fillers and the electrical properties of the composites. Under the selected mixing conditions the lowest electrical percolation threshold of 0.7 wt.% was found for Nanocyl™ NC7000 in low viscous PA12. Moreover, big influences of the end group functionality (acid or amine excess) and the melt viscosity of the matrix were found. Composites of PA12 with acid excess showed lower percolation thresholds than those based on amine terminated materials. At constant end group ratio low viscous matrices resulted in lower percolation thresholds than high viscous materials. The best MWNT dispersion was obtained in both high viscous PA12 composites. In these systems the mixing speed was varied indicating an optimum concerning electrical conductivity at 150 rpm as compared to 50 and 250 rpm.  相似文献   

3.
In this study, poly(p-phenylene sulfide) based nanocomposites containing multi-walled carbon nanotubes (MWNTs) were produced by dilution of a 15 wt.% MWNT/PPS masterbatch via twin screw extrusion process. The electrical conductivities of the nanocomposites were measured and percolation threshold was observed below 0.77 vol.% MWNTs. The state of dispersion and distribution quality of MWNTs was analyzed on macro- and nanoscale through transmission light and scanning electron microscopy (SEM). A good deagglomeration of primary macroagglomerates and a homogenous MWNT distribution on nanoscale was found. The dependence of conductivity on MWNT concentration was estimated using statistical percolation theory which matches the experimental data quite well. A new empirical equation was set up to fit the electrical conductivity using quantitative values of visible percolating MWNTs which were detected by charge contrast imaging in SEM.  相似文献   

4.
Ball milling of carbon nanotubes (CNTs) in the dry state is a common way to produce tailored CNT materials for composite applications, especially to adjust nanotube lengths. For NanocylTM NC7000 nanotube material before and after milling for 5 and 10 h the length distributions were quantified using TEM analysis, showing decreases of the mean length to 54% and 35%, respectively. With increasing ball milling time in addition a decrease of agglomerate size and an increase of packing density took place resulting in a worse dispersability in aqueous surfactant solutions. In melt mixed CNT/polycarbonate composites produced using masterbatch dilution step, the electrical properties, the nanotube length distribution after processing, and the nano- and macrodispersion of the nanotubes were studied. The slight increase in the electrical percolation threshold in the melt mixed composites with ball milling time of CNTs can be assigned to lower nanotube lengths as well as the worse dispersability of the ball milled nanotubes. After melt compounding, the mean CNT lengths were shortened to 31%, 50%, and 66% of the initial lengths of NC7000, NC7000-5 h, and NC7000-10 h, respectively.  相似文献   

5.
The sintering and grain growth behaviour of alumina + 2, 3.5 and 5 wt.% carbon nanotubes (CNTs) and alumina + 2 wt.% carbon black nanocomposites prepared by Spark Plasma Sintering (SPS) were studied. The addition of CNTs to ceramics produces a large reduction in the sintering temperature required for their complete densification and a significant grain size refinement by a previously unreported mechanism. The CNTs form a strong entangled network around the grains, which constrains the normal and abnormal grain growth. An alumina/alumina + 2 wt.% CNT/alumina laminate structure was prepared to demonstrate directly the large grain-growth retardation effect of CNTs. These effects open up the possibility of using CNTs as a sintering aid to control the sintering behaviour and microstructures of ceramics in bulk, laminate and functionally gradient (FGM) form.  相似文献   

6.
The reactive extrusion of lauryl lactam to polyamide 12 (PA12) of controlled molar mass was successfully performed in a microcompounder. The maximum residual monomer content was less than 1%. The in-situ polymerization in the presence of 1–5 wt.% multiwalled carbon nanotubes (MWCNTs) was studied and the processing conditions were optimized with respect to the electrical resistivity and MWCNT dispersion. Runs which yielded in higher molar mass PA12 resulted in better dispersion of MWCNTs, whereas nanocomposites with lower molar mass PA12 had lower electrical percolation thresholds (MWCNT concentration ∼1 wt.%). A high screw speed of 200 rpm was identified to cause best dispersion and the lowest percolation threshold.  相似文献   

7.
The present study demonstrates a novel mixing approach for achieving a good dispersion of carbon nanotubes (CNTs) in a styrene-butadiene rubber (SBR), which leads to a significant improvement in electrical properties. Our mixing technique consists of (1) pretreatment by ultrasonication to disentangle the bundles of CNTs in organic solvent and (2) “rotation-revolution” mixing of the CNTs with SBR without mechanical shear, which prevents CNTs from collapsing during the mixing process. The present mixing method does not require the addition of any dispersing agents (amphiphilic molecules) or chemical modification of the CNTs to obtain a good dispersion. Compared with a conventional Banbury mixing technique, our method leads to a significant decrease in the percolation threshold (less than 1 phr), where the electrical conductivity suddenly increases due to the formation of percolation networks of CNTs in SBR. This is because the aspect ratio of the CNTs was maintained even after the mixing process, whereas CNTs were broken during the conventional Banbury mixing. The effect of using different types of CNTs on electrical conductivity was also investigated. The results show that the percolation threshold is largely related to the structural quality (graphitization) of the CNTs as well as their aspect ratio.  相似文献   

8.
This paper reports on the development of electrically conductive nanocomposites containing multi-walled carbon nanotubes in an unsaturated polyester matrix. The resistivity of the liquid suspension during processing is used to evaluate the quality of the filler dispersion, which is also studied using optical microscopy. The electrical properties of the cured composites are analysed by AC impedance spectroscopy and DC conductivity measurements. The conductivity of the cured nanocomposite follows a statistical percolation model, with percolation threshold at 0.026 wt.% loading of nanotubes. The results obtained show that unsaturated polyesters are a matrix suitable for the preparation of electrically conductive thermosetting nanocomposites at low nanotube concentrations. The effect of carbon nanotubes reaggregation on the electrical properties of the spatial structure generated is discussed.  相似文献   

9.
The filling rate of Fe nanowires in carbon nanotubes (CNTs) was improved by a post-treatment which involved annealing and magnetic separation. The annealing process transformed γ-Fe to ferromagnetic α-Fe, resulting in α-Fe-filled CNTs with improved magnetic properties. The Fe-filled CNTs were then separated from those unfilled CNTs due to the different attractive forces under magnetic field. Thermal gravimetric analysis (TGA) revealed that the purity of CNTs was improved after magnetic separation and the filling rate can be up to 40.0 wt.%, which is increased about 8.1% comparing with annealed CNTs. The saturation magnetization of CNTs reached 31.45 emu/g after magnetic separation.  相似文献   

10.
In this work, the influence of multi-walled carbon nanotubes (MWCNT) on electrical, thermal and mechanical properties of CNT reinforced isotactic polypropylene (iPP) nanocomposites is studied. The composites were obtained by diluting a masterbatch of 20 wt.% MWCNT with a low viscous iPP, using melt mixing. The morphology of the prepared samples was examined through SEM, Raman and XRD measurements. The effect of MWCNT addition on the thermal transitions of the iPP was investigated by differential scanning calorimetry (DSC) measurements. Significant changes are reported in the crystallization behavior of the matrix on addition of carbon nanotubes: increase of the degree of crystallinity, as well as appearance of a new crystallization peak (owing to trans-crystallinity). Dynamic mechanical analysis (DMA) studies revealed an enhancement of the storage modulus, in the glassy state, up to 86%. Furthermore, broadband dielectric relaxation spectroscopy (DRS) was employed to study the electrical and dielectric properties of the nanocomposites. The electrical percolation threshold was calculated 0.6–0.7 vol.% MWCNT from both dc conductivity and dielectric constant values. This value is lower than previous mentioned ones in literature in similar systems. In conclusion, this works provides a simple and quick way for the preparation of PP/MWCNT nanocomposites with low electrical percolation threshold and significantly enhanced mechanical properties.  相似文献   

11.
Commercial Udel® poly(ether sulfone) (PSU) was filled with three different commercially available multiwalled carbon nanotubes (MWCNTs) by small scale melt mixing. The MWCNTs were as grown NC 7000 and two of its derivatives prepared by ball milling treatment. One of them was unmodified (NC 3150); the other was amino modified (NC 3152). The main difference beside the reactivity was the reduced aspect ratio of NC 3150 and NC 3152 caused by ball milling process. All PSU/MWCNT composites with similar filler content were prepared under fixed processing conditions and comparative analysis of their electrical and mechanical properties were performed and were correlated with their microstructure, characterized by optical microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). A non-uniform MWCNT dispersion was observed in all composites. The MWCNTs were present in form of agglomerates in the size of 10–60 μm whereas the deagglomerated part was homogeneously distributed in the PSU matrix. The differences in the agglomeration states correlate with the variations of properties between different PSU/MWCNT composites. The lowest electrical percolation threshold of 0.25–0.5 wt.% was observed for the shortened non-functionalized MWCNT composites and the highest for amine-modified MWCNT composites (ca. 1.5 wt.%). The tensile behavior of the three composites was only slightly altered with CNT loading as compared to the pure PSU. However, the elongation at break showed a reduction with MWCNT loading and the reduction was least for composite with best MWCNT dispersion.  相似文献   

12.
Ni-Cu-P/carbon nanotubes (CNTs) quaternary composite coatings were successfully obtained on low carbon steel matrix by electroless plating. The effects of CNTs concentration in the bath on the microstructure of the composite coatings, CNTs content in the composite coatings and the hardness of composite coatings before and after heat treatment at 400 °C have been studied. In addition, the corrosion resistance of Ni-Cu-P/CNTs composite coatings was evaluated by anodic polarization curves in 3.5 wt.% NaCl solution at room temperature. It was noted that the CNTs concentration remarkably influenced the surface morphology of the coatings. With increasing CNTs concentration, both the CNTs content in the composite coatings and the hardness of composite coatings increased at first and then decreased. And the composite coatings after heat treatment provided higher hardness than the as-deposited coatings. The corrosion resistance of Ni-Cu-P/CNTs composite coatings is excellent compared with that of Ni-Cu-P coatings.  相似文献   

13.
Solution styrene butadiene rubber (S-SBR) composites reinforced with graphene nanoplatelets (GnPs), expanded graphite (EG), and multiwalled carbon nanotubes (MWCNTs) were prepared and the electrical and various mechanical properties were compared to understand the specific dispersion and reinforcement behaviours of these nanostructured fillers. The electrical resistivity of the rubber composite gradually decreased with the increase of filler amount in the composite. The electrical percolation behaviour was found to be started at 15 phr (parts per hundred rubber) for GnP and 20 phr for EG filled systems, whereas a sharp drop was found at 5 phr for MWCNT based composites. At a particular filler loading, dynamic mechanical analysis and tensile test showed a significant improvement of the mechanical properties of the composites comprised of MWCNT followed by GnP and then EG. The high aspect ratio of MWCNT enabled to form a network at low filler loading and, consequently, a good reinforcement effect was observed. To investigate the effect of hybrid fillers, MWCNT (up to 5 phr) were added in a selected composition of EG based compounds. The formation of a mixed filler network showed a synergistic effect on the improvement of electrical as well as various mechanical properties.  相似文献   

14.
Raman spectroscopy is used to access the dispersion state of DWNTs in a PEEK polymer matrix. The interaction of the outer tube with the matrix can be determined from the line shape of the Raman G band. This allows us to distinguish regions where the nanotubes are well dispersed and regions where the nanotubes are agglomerated. The percolation threshold of the electrical conductivity of the double wall carbon nanotubes (DWNTs)/PEEK nanocomposites is found to be at 0.2-0.3 wt%. We find a maximum electrical conductivity of 3 × 10−2 S cm−1 at 2 wt% loading. We detect nanotube weight concentrations as low as 0.16 wt% by Raman spectroscopy using a yellow excitation wavelength. We compare the Raman images with transmission electron microscopy images and electrical conductivity measurements. A statistical method is used to find a quantitative measure of the DWNTs dispersion in the polymer matrix from the Raman images.  相似文献   

15.
The percolation behaviour of the hybrid composites of polypropylene glycol (PPG) filled with multiwalled carbon nanotubes (MWCNTs) and Laponite RD (Lap), or with MWCNTs and organo-modified Laponite (LapO) was studied by wide angle X-ray diffraction (XRD), microscopic image analysis, and electrical conductivity measurements. Cetyltrimethylammoniumbromide (CTAB) was used as an organo-modifier of Laponite. The Lap and LapO were found to have rather different affinity to PPG. XRD data have evidenced finite PPG integration inside Lap and complete exfoliation of LapO stacks in a PPG matrix. In PPG + MWCNT composites containing no Lap or LapO, increase of MWCNT concentration above the critical value Cp ∼ 0.4 wt% resulted in percolation. The value of the percolation threshold, Cp, was practically the same for hybrid PPG + MWCNT + Lap composites. However, it noticeably decreased (Cp ∼ 0.2 wt%) in PPG + MWCNT + LapO materials. The observed behaviour of the percolation threshold may be attributed to the effects exerted by LapO on the size of MWCNT aggregates, state of their dispersion and homogeneity of their spatial distribution.  相似文献   

16.
Response surface methodology (RSM) coupled with the central composite design (CCD) was used to optimize the mechanical properties of calcium phosphate cement/multi-walled carbon nanotubes/bovine serum albumin (CPC/MWCNTs/BSA) composites. In this study, CPC composites were reinforced by multi-walled carbon nanotubes (MWCNTs) and bovine serum albumin (BSA) in order to induce high mechanical properties in the CPC/MWCNTs/BSA system. The effect of various process parameters on the compressive strength of CPC/MWCNTs/BSA composites was studied using design of experiments (DOE). The process parameters studied were: wt.% of MWCNTs (0.2–0.5 wt.%), wt.% of BSA (5–15 wt.%) and type of MWCNTs (e.g. as-pristine MWCNT (MWCNT-AP), hydroxyl group functionalized MWCNT (MWCNT-OH) and carboxyl group functionalized MWCNT (MWCNT-COOH)). Based on the CCD, a quadratic model was obtained to correlate the process parameters to the compressive strength of CPC/MWCNTs/BSA composites. From the analysis of variance (ANOVA), the most significant factor affected on the experimental design response was identified. The predicted compressive strength after process optimization was found to agree well with the experimental value. The results revealed that at 0.5 wt.% of MWCNT-OH and 15 wt.% of BSA, the highest compressive strength of 14 MPa was obtained.  相似文献   

17.
Functional polypropylene (PP) nanocomposites were prepared by melt compounding with multiwalled carbon nanotubes (MWNT) as the electrically conductive component and barium titanate (BT) spherical nanoparticles as the ferroelectric component. To make PP electrically conductive, more than 3 wt.% MWNT is required. Surface modification of either MWNT or BT with titanate coupling agent further improves the electrical conductivity of the PP/MWNT/BT ternary nanocomposites. Interestingly, by modifying both MWNT and BT, 2 wt.% MWNT are sufficient to make the ternary nanocomposite electrically conductive. In addition, the incorporation of MWNT greatly increases the dielectric permittivity of PP/BT nanocomposites. However, to retain a low dielectric loss, the MWNT loading should be slightly less than the percolation threshold of the nanocomposites. The improved electrical conductivity and dielectric properties make the ternary nanocomposites attractive in practical applications.  相似文献   

18.
Effects of carbon on the hydrogen embrittlement behaviour of Fe3Al intermetallic compounds were observed by revealing its microstructure. In low-carbon content (0.05 wt.%) alloy embrittlement was found in the Fe3Al phase, in moderate level of carbon content (0.14-0.5 wt.%) there was no embrittlement in the alloy, whereas in high level of carbon content (1 wt.%) embrittlement was found in the interdendritic region.  相似文献   

19.
Pure titanium matrix composite reinforced with carbon nanotubes (CNTs) was prepared by spark plasma sintering and hot extrusion via powder metallurgy process. Titanium (Ti) powders were coated with CNTs via a wet process using a zwitterionic surfactant solution containing 1.0, 2.0 and 3.0 wt.% of CNTs. In situ TiC formation via reaction of CNTs with titanium occurred during sintering, and TiC particles were uniformly dispersed in the matrix. As-extruded Ti/TiCs composite rods were annealed at 473 K for 3.6 ks to reduce the residual stress during processing. After annealing process, the tensile properties of the composites were evaluated at room temperature, 473, 573 and 673 K, respectively. Hardness test was also performed at room temperature up to 573 K with a step of 50 K. The mechanical properties of extruded Ti/CNTs composites at elevated temperature were remarkably improved by adding a small amount of CNTs, compared to extruded Ti matrix. These were due to the TiC dispersoids originated from CNTs effectively stabilized the microstructure of extruded Ti composites by their pinning effect. Moreover, the coarsening and growth of Ti grain never occurred even though they were annealed at 573, 673 K for 36 ks and 673 K for 360 ks, respectively.  相似文献   

20.
Carbon nanoribbons and single crystal iron filled multiwall carbon nanotubes (MWCNTs) have been synthesized by simple pyrolysis technique. SEM investigation shows that the material consist mainly carbon nanoribbons and carbon nanotubes (CNTs). X-ray diffraction (XRD), electron energy loss spectroscopy (EELS), electron energy dispersive X-ray (EDX), transmission electron miscroscopy (TEM) and highresolution transmission electron miscroscopy (HRTEM) studies reveal carbon nanotubes are filled with α-Fe. Closer inspection of HRTEM images indicated that the bcc structure α-Fe nanowires are monocrystalline and Fe (1 1 0) plane is indeed perpendicular to the G (0 0 2) plane, whereas orientation of (0 0 2) lattice planes of carbon nanoribbon is perpendicular to the axis of growth. Magnetic properties studied by superconducting quantum interference device (SQUID) at 300 K and 10 K exhibited coercivity of 1037 Oe and 2023 Oe. The large coercitivity is strongly attributed to the small size monocrystalline single phase α-Fe, single domain nature of the encapsulated Fe crystal, magnetocrystalline shape anisotropy and ferromagnetic behaviour of localized states at the edges of the carbon nanoribbons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号