首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A series of unconfined compression tests were performed on specimens of fiber-reinforced cemented sand (FRCS) to evaluate how fiber inclusion affects the measured strength and ductility characteristics of cemented sand. Lightly cemented sand with three different cement ratios (2, 4, and 6% by weight of soil) was mixed with four different fiber ratios (0, 0.3, 0.6, and 1% by weight of soil) and then compacted into a cylindrical specimen. Polyvinyl alcohol (PVA) fiber, which adheres well to cement, was randomly distributed throughout the cemented sand. The test results indicate that the inclusion of PVA fiber has a significant effect on both the unconfined compressive strength (UCS) and the axial strain at peak strength. The increase in the UCS was most apparent in the 2% cemented specimen wherein the UCS increased more than three times as the fiber ratio increased up to 1%. The ductile behavior of the FRCS is quantified by the deformability index, D, which is a ratio of the axial strain at peak strength of fiber-reinforced specimen to that of non-fiber-reinforced specimen. In the cases of 1% fiber ratio, the values of D were greater than four, regardless of cement ratios.  相似文献   

2.
This study aims to develop a dosage methodology based on tensile and compressive strength for artificially cemented fibre reinforced soils considering filament length. The controlling parameters evaluated were the fibre length (l), the cement content (C), the porosity (η) and the porosity/cement ratio (η/Civ). A number of unconfined compression and split tensile tests were carried out in the present work. The results show that fibre insertion in the cemented soil, for the whole range of cement content studied, and the increase of reinforcement length improve unconfined compressive and split tensile strengths. It was shown that the porosity/cement ratio, in which volumetric cementitious material content is adjusted by an exponent (0.28 for all the fibre-reinforced and non-reinforced cemented soil mixtures) to end in unique correlations for each mixture, is a good parameter in the evaluation of the unconfined compressive and split tensile strength of the fibre-reinforced and non-reinforced cemented soil studied. Analysis of variance (ANOVA) performed on the results of a factorial experiment considering the effect of adjusted cement content, fibre length and porosity showed that all of these factors are significant in affecting the measured changes in split tensile and unconfined compressive strength values. Finally, unique dosage relationships could be achieved linking the unconfined compressive strength (qu) and the split tensile strength (qt) of the sandy soil studied with porosity/cement ratio (η/Civ) and fibre length (l).  相似文献   

3.
Unconfined compression tests and suction measurements were carried out in the present work on sandy specimens with distinct Class F fly ash amounts, lime contents, porosities and curing periods to assess key parameters controlling strength of fly ash-lime amended soil. A special effort has been allocated in order to develop a dosage methodology for fly ash-lime improved soils based in a rational criterion, as it exists in the concrete technology where the water/cement ratio plays a fundamental role in the assessment of the target strength. The results show that the unconfined compressive strength (UCS) increased linearly with the amount of lime for soil-fly ash-lime mixtures at all curing time periods studied. A power function fits better the relation UCS-porosity for soil-fly ash-lime mixtures. The bigger the amount of fly ash and the curing time, the larger the UCS for any given porosity and lime content. Finally, the porosity/volumetric lime content ratio, in which volumetric lime content is adjusted by a coefficient (in this case a unique value-0.12-was found for all soil-fly ash-lime mixtures and all curing periods studied) to end in single correlations for each curing period, show to be a good parameter in the evaluation of the unconfined compressive strength of the soil studied (UCS varies non-linearly with the porosity/volumetric lime content ratio in the case of fly ash-lime addition).  相似文献   

4.
Although natural fibers can improve the strength behavior of frozen-thawed soil, the reinforcing mechanism is still not fully understood. To investigate the effects of freeze-thaw cycles on the strength of natural fiber-reinforced soil, unconfined compression tests, single-fiber pull-out tests and scanning electron microscopy (SEM) tests under 0, 3, 5, 10, 15, and 20 freeze-thaw cycles were conducted on cotton straw fiber-reinforced soil. It was found that the unconfined compressive strength (UCS) of fiber-reinforced soil decreases exponentially with the number of freeze-thaw cycles. In addition, fiber reinforcement weakens the softening degree of frozen-thawed soil under unconfined states. The UCS reduction in fiber-reinforced soil under freeze-thaw conditions is smaller than the strength reduction at the fiber-soil interface because fiber reinforcement is mainly governed not only by the fiber-soil interface but also by the spatial stress network established by discrete fibers. The complex spatial stress network, which improves the reinforcement of the fibers, is monitored by SEM after freeze-thaw cycles.  相似文献   

5.
水泥土搅拌桩作为基坑止水帷幕已经得到了广泛应用,为了更深入的理解作为止水帷幕的水泥土的工程特性,通过对不同水泥掺入量的水泥土无侧限抗压强度和渗透系数的室内试验研究,利用CBR-1承载比试验仪和TSS-2柔性壁三轴渗透仪对水泥土进行了无侧限抗压强度和渗透试验,分析了养护龄期及水泥掺入量对水泥土的无侧限抗压强度和渗透系数的影响。试验结果表明,水泥土的无侧限抗压强度随养护龄期和水泥掺入量的增大而增大,并通过曲线的拟合,得出了无侧限抗压强度的预测公式;渗透系数随养护龄期和水泥掺入量的增大而减少,通过数据对比得出28天之后水泥土渗透系数主要是受水泥掺入量的影响。  相似文献   

6.
One of the conventional ways to improve the mechanical behavior of soils is to mix them with cementing agents such as cement, lime and fly ash. Recently, introduction to alternative materials or sub-products that can be adopted to improve the soil strength is of paramount importance. Therefore, the present study aims to investigate the effects of porosity (η), dry unit weight (γd) of molding, cement content (C) and porosity/volumetric cement content ratio (η/Civ) or void/cement ratio on the unconfined compressive strength (qu or UCS) of silty soil–roof tile waste (RT) mixtures. Soil samples are molded into four different dry unit weights (i.e. 13 kN/m3, 13.67 kN/m3, 14.33 kN/m3 and 15 kN/m3) using 3%, 6% and 9% cement and 5%, 15% and 30% RT. The results show that with the addition of cement, the strength of the RT–soil mixtures increases in a linear manner. On the other hand, the addition of RT decreases qu of the samples at a constant percentage of cement, and the decrease in porosity can increase qu. A dosage equation is derived from the experimental data using the porosity/volumetric cement content ratio (η/Civ) where the control variables are the moisture content, crushed tile content, cement content and porosity.  相似文献   

7.
A series of unconfined compressive strength (UCS) tests have been conducted on unreinforced fly ash as well as fly ash reinforced with jute geotextiles. The effects of different governing parameters viz., degree of saturation, size of samples, number of jute geotextile layers and age of sample on UCS have been studied. From the test results it is found that the values of UCS are maximum at degree of saturation of 70–75%. The effect of sample size on the values of UCS for unreinforced fly ash is insignificant, whereas with increase in diameter of sample, values of UCS increase in case of reinforced fly ash. With increase in number of jute geotextile layers for reinforced fly ash samples, values of UCS increase and maximum enhancement is found to be around 525% with 4 layers of reinforcement. A non-linear power model has been developed to estimate unconfined compressive strength (UCSR) of fly ash reinforced with jute geotextiles in terms of unconfined compressive strength (UCSUR) of unreinforced fly ash and number of layers of reinforcement (N).  相似文献   

8.
Mechanical behavior of lightweight soil reinforced with waste fishing net   总被引:1,自引:0,他引:1  
Lightweight soil is cement-treated and consists of dredged clayey soil, cement, and air-foam. Reinforced lightweight soil (RLS) contains waste fishing net to increase its shear strength. This paper investigates the strength characteristics and stress–strain behavior of reinforced and unreinforced lightweight soils. Test specimens were prepared with varying admixtures of cement content (8%, 12%, 16%, and 20% by the weight of untreated soil), initial water content (125%, 156%, 187%, 217%, and 250%), air-foam content (1%, 2%, 3%, 4%, and 5%), and waste fishing net (0%, 0.25%, 0.5%, 0.75%, and 1%). Then several series of unconfined compression tests and one-dimensional compression tests were conducted. The experiments with lightweight soil indicated that the unconfined compressive strength increased with an increase in cement content, but decreased with increasing water content and air-foam content. The stress–strain relationship and the unconfined compressive strength were influenced by the percentage of waste fishing net. In addition, the strength of RLS generally increased after adding waste fishing net due to the bond strength and the friction at the interface between waste fishing net and soil mixtures, but the amount of increase in compressive strength was not directly proportional to the percentage of waste fishing net. The results of testing indicated that the maximum increase in compressive strength was obtained for a waste fishing net content of about 0.25%. The bulk unit weight of lightweight soil was strongly dependent on the air-foam content. The compression characteristics of lightweight soil, including the yield stress and compression index, did not depend greatly on whether the samples were cured underwater or in air.  相似文献   

9.
《Soils and Foundations》2023,63(3):101319
The combination of chemical stabilization and fiber reinforcement can simultaneously improve the strength and ductility of dredged sediment. The polypropylene fiber (PF) and straw fiber (SF) were respectively used as artificial and natural reinforcements of cement-stabilized dredged sediment (CDS). A series of unconfined compressive strength (UCS) tests were conducted to investigate the effects of cement content, fiber content, fiber length and water content on the mechanical properties of PF-reinforced CDS (CPFDS) and SF-reinforced CDS (CSFDS). Furthermore, the cementation-reinforcement mechanism was explored and analyzed via macro failure characteristics and micro interfacial morphologies inside typical CPFDS and CSFDS samples. The results showed that increasing cement content or decreasing water content significantly improved the UCS and aggravated the brittleness of CPFDS and CSFDS. The suitable addition of PF can effectively improve the UCS of CDS, while incorporating SF exhibited the opposite role. The maximum 7d-, 28d-, 60d- and 90d-UCS of CPFDS were respectively 17.7%, 43.6%, 10.7% and 9.7% higher than that of CDS. The optimum length of PF inside CPFDS and SF inside CSFDS was 3 mm and 5–10 mm, respectively. Both incorporating PF or SF can effectively improve the ductility of CDS. Based on the proposed parameters of total-water/cement ratio and fiber cementation factor, the effective strength development models of CPFDS and CSFDS considering cement content, fiber content, water content and curing time were empirically established. The fiber “bridge” effect and interfacial friction between fiber and cemented soil particles were mainly responsible for the strength evolution and ductility improvement of CPFDS and CSFDS.  相似文献   

10.
11.
聚丙烯纤维加筋膨胀土强度试验研究   总被引:1,自引:0,他引:1  
吴继玲  张小平 《土工基础》2010,24(6):71-73,76
为了研究聚丙烯纤维对膨胀土强度的影响,进行了大量的室内试验。试验结果表明,纤维膨胀土的强度比素土有了明显的提高,且随着纤维含量的增加,无侧限抗压强度增加,当纤维含量为0.3%时,无侧限抗压强度和纤维土的粘聚力达到最大值,随着纤维含量的继续增加,无侧限抗压强度和粘聚力降低,说明0.3%的纤维含量为最优含筋量。相同纤维含量的情况下,纤维土的强度随着纤维长度的增加而明显增加。同时聚丙烯纤维还可以增加纤维膨胀土的峰值强度,降低纤维膨胀土残余强度的损失,增加土样破坏的韧性,延缓破坏。  相似文献   

12.
This paper investigates the effect of recycled polyester fiber, produced from polyethylene(PET) bottles, in combination with nano-Si O2 as a new stabilizer to improve the mechanical properties of soils. We intend to study the effect of adding nano-Si O2 and recycled polyester fiber on soil engineering properties,especially the shear strength and unconfined compressive strength(UCS), using clayey soil with low liquid limit. Three different combinations of fiber-soil ratios ranging between 0.1% and 0.5% as well as three different combinations of nano-soil ratios ranging between 0.5% and 1% are used. The shear strength and UCS of treated specimens are obtained from direct shear test and unconfined compression test, respectively. Results of this study show that the addition of recycled polyester fiber and nano-Si O2 increases the strength of soil specimens. Both the shear strength and UCS are improved by increasing the contents of recycled polyester fiber and nano-Si O2 in the soil mixture. The increase in the nano-Si O2 content leads to a reduction in failure strain, but the increase in the content of recycled polyester fiber leads to an increase in failure strain. The increase in the contents of recycled polyester fiber and nanoSi O2 leads to an increase in elastic modulus of soils. Based on the test results, the addition of recycled polyester fiber improves the mechanical properties of soils stabilized with nano-Si O2 as well as the recycled polyester fiber has a positive effect on soil behaviors.  相似文献   

13.
A series of unconfined compression tests were carried out to examine the effect of fiber reinforcement and distribution on the strength of fiber-reinforced cemented sand (FRCS). Nakdong River sand, polyvinyl alcohol (PVA) fiber, cement and water were mixed and compacted into a cylindrical sample with five equal layers. PVA fibers were randomly distributed at a predetermined layer among the five compacted layers. The strength of the FRCS increases as the number of fiber inclusion layers increases. A fiber-reinforced specimen, where fibers were evenly distributed throughout the five layers, was twice as strong as a non-fiber-reinforced specimen. Using the same amount of fibers to reinforce two different specimens, a specimen with five fiber inclusion layers was 1.5 times stronger than a specimen with one fiber inclusion layer at the middle of the specimen. The fiber reinforcement and distribution throughout the entire specimen resulted in a significant increase in the strength of the FRCS.  相似文献   

14.
The unified effective stress theory based on suction stress (SSCC theory) enables the characterization of soils under both saturated and unsaturated conditions with one closed-form relationship. This study provides experimental verification of this theory through the unconfined compressive strength test (UCS) and indirect tensile test strength (ITS) on silty clay soil stabilized with fiber. A series of matric suction, ITS, and UCS tests were conducted to validate the SSCC theory through the representation of the results of ITS and UCS tests in terms of mean total stress (p) versus deviatoric stress (q) and mean effective stress (p`) versus deviatoric stress (q). The results of the validation procedures showed that the SSCC theory is applicable and valid at a range of 6%–16% of water content on the silty clay and the silty clay fiber-reinforced soils. There is a small fluctuation in the increase of ITS and UCS values with increasing fiber content due to randomly oriented distribution of the fiber. The addition of glass fiber does not significantly affect the capacity of water retention of the soil. It improves the condition of the mechanical soil properties at the end of construction more than of the effective stress condition.  相似文献   

15.
浸水条件下水泥砂土力学性能的试验研究   总被引:3,自引:0,他引:3  
通过对不同水泥掺入比、不同龄期的水泥砂土在浸水和不浸水条件下的无侧限抗压试验,分析了浸水对水泥砂土的各项力学性能的影响,以及水泥砂土的无侧限抗压强度和模量随水泥掺入比及龄期的变化规律,并对水泥砂土全应力应变曲线的特性进行了总结。  相似文献   

16.
用低掺量水泥加固3种不同的土进行室内试验研究,测试了不同Ca(OH)2掺量及不同龄期下3种水泥土的无侧限抗压强度。分析了随Ca(OH)2掺量的增加,不同龄期的3种水泥土无侧限抗压强度变化规律及原因。试验结果表明:水泥红粘土强度随Ca(OH)2掺量的增加提高最为明显,粉质粘土次之,砂土最弱。分析原因是由于土体的细度对水泥土强度影响较大。土体越细,土体中粘土矿物越多, Ca(OH)2掺量的增加促进了更多的离子交换作用和火山灰作用的发生,从而提高了水泥土强度。试验所用的3种土中红粘土最细,所以水泥红粘土强度随Ca(OH)2掺量的增加提高最为明显。  相似文献   

17.
This work studies the effect of using two types of polymer (fibers and liquid) to enhance the strength of cemented soft clay. Four polymer contents were used (0, 0.1, 0.2, 0.5 and 1% by dry weight of the soil) to investigate the unconfined compressive strength, qun of soft clay mixed with three cement contents (5, 10 and 15%). For wide understanding to the polymer/cemented soil behaviour several factors were considered in this study such as curing time, dry unit weight, the mixture workability and the behaviour after disturbance. This investigation revealed that both fibers and liquid polymers can improve the cemented soft clay strength, however the fiber mechanism in improving the mixture is totally different than the liquid. Increasing the fiber content shall increase qun till a peak point at fiber content of 0.5%, where the strength started to reduce after. The mixture workability has been improved with increasing the liquid polymer content, and reduced with increasing the fiber content. Fibers can be used to raise up the strength of disturbed cemented soft clay up to 240% by using fiber content of 0.5%. Both fibers and liquid polymers showed a remarkable mechanically, economically and environmentally dominance to be used as additive to cement in improving the soft clay.  相似文献   

18.
编织袋袋装水泥红土的力学性能试验研究   总被引:1,自引:0,他引:1  
通过室内抗压试验,研究了在不同模型袋类型、水泥掺入比、养护龄期以及不同含水量下编织袋袋装水泥红土的力学性能,并获得了两种编织袋袋装水泥红土材料的应力—应变全过程曲线。在对试验结果进行回归分析后,给出了不同水泥掺入比、不同龄期下的复合编织袋袋装水泥红土之间的强度推算公式。为了深入研究,同时进行了相同条件下水泥红土的平行对比试验。  相似文献   

19.
水泥土无侧限抗压强度影响因素的室内试验研究   总被引:8,自引:0,他引:8  
通过对实际工程水泥土室内配方试验结果的归纳与分析,研究了水泥土无侧限抗压强度与土的含水量、搅拌桩类型、水灰比、水泥掺量和龄期等影响因素的关系,并对水泥土2 8天的无侧限抗压强度进行了预测。  相似文献   

20.
以普通硅酸盐水泥和动物蛋白发泡剂为基材,制备了泡沫混凝土,研究了:试样强度随水灰比、干密度、纤维长度、纤维类型的变化规律;单轴受压下应力应变全曲线;试样微观泡孔分布以及吸水性能的变化。结果表明,素泡沫混凝土和纤维增强泡沫混凝土的抗压强度均随孔隙率增加呈指数减小,水灰比对抗压强度的影响随纤维添加量、孔隙率的不同而不同。短丝纤维对强度的提升优于长丝纤维,网状纤维对强度的改善优于丝状纤维;纤维泡沫混凝土应力应变全曲线包括上升、下降和峰后三段,与素泡沫混凝土相比,其峰值应力对应的峰值应变减小,而弹性模量和残余应力均大幅增加;大直径泡孔占比随纤维添加量增加而降低,添加纤维提升了试样的吸水性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号